西门子抚顺授权代理商
Ov:换算结果
Iv:换算对象
Osh:换算结果的高限
Osl:换算结果的低限
Ish:换算对象的高限
Isl:换算对象的低限
57、S7-200模拟量输入信号的精度能达到多少?
拟量输入模块有两个参数容易混淆:
1)模拟量转换的分辨率
2)模拟量转换的精度(误差)
分辨率是A/D模拟量转换芯片的转换精度,即用多少位的数值来表示模拟量。S7-200模拟量模块的转换分辨率是12位,能够反映模拟量变化的小单位是满量程的1/4096。
模拟量转换的精度除了取决于A/D转换的分辨率,还受到转换芯片的外围电路的影响。在实际应用中,输入的模拟量信号会有波动、噪声和干扰,内部模拟电路也会产生噪声、漂移,这些都会对转换的后精度造成影响。这些因素造成的误差要大于A/D芯片的转换误差。
58、为什么模拟量是一个变动很大的不稳定的值?
可能是如下原因:
你可能使用了一个自供电或隔离的传感器电源,两个电源没有彼此连接,即模拟量输入模块的电源地和传感器的信号地没有连接。这将会产生一个很高的上下振动的共模电压,影响模拟量输入值。
另一个原因可能是模拟量输入模块接线太长或绝缘不好。
可以用如下方法解决:
1)连接传感器输入的负端与模块上的公共M端以补偿此种波动。(但要注意确保这是两个电源系统之间的联系。)
背景是:
模拟量输入模块内部是不隔离的;
共模电压不应大于12V;
对于60Hz干扰信号的共模抑制比为40dB。
2)使用模拟量输入滤波器。
59、EM231模块上的SF红灯为何闪烁?
SF红灯闪烁有两个原因:模块内部软件检测出外接热电阻断线,或者输入超出范围。由于上述检测是两个输入通道共用的,当只有一个通道外接热电
阻时,SF灯必然闪烁。解决方法是将一个100Ohm的电阻,按照与已用通道相同的接线方式连接到空的通道;或者将已经接好的那一路热电阻的所有引线,一一对应连接到空的通道上。
60、什么是正向标定、负向标定?
正向标定值是3276.7度(华氏或摄氏),负向标定值是-3276.8度。如果检测到断线、输入超出范围时,相应通道的数值被自动设置为上述标定值。
61、热电阻的技术参数不是很清楚,如何在DIP开关上设置类型?
应该尽量弄清除热电阻的参数。否则可以使用缺省设置。
62、EM235是否能用于热电阻测温?
EM235不是用于与热电阻连接测量温度的模块,勉强使用容易带来问题。建议使用EM231RTD模块。
63、S7-200的模拟量输入/输出模块是否带信号隔离?
不带隔离。如果用户的系统中需要隔离,请另行购买信号隔离器件。
64、模拟量信号的传输距离有多远?
电压型的模拟量信号,由于输入端的内阻很高(S7-200的模拟量模块为10兆欧),极易引入干扰,讨论电压信号的传输距离没有什么意义。一般电压信号是用在控制设备柜内电位器设置,或者距离非常近、电磁环境好的场合。
电流型信号不容易受到传输线沿途的电磁干扰,在工业现场获得广泛的应用。
电流信号可以传输比电压信号远得多的距离。理论上,电流信号的传输距离受到以下几个因素的制约:
1)信号输出端的带载能力,以欧姆数值表示(如700Ω)
2)信号输入端的内阻
3)传输线的静态电阻值(来回是双线)
信号输出端的负载能力必须大于信号输入端的内阻与传输线电阻之和。当然实际情况不会*符号理想的计算结果,传输距离过长会造成信号衰减,也会引入干扰。
65、S7-200模拟量模块的输入/输出阻抗指标是多少?
模拟量输入阻抗:
电压型信号:≥10MΩ
电流型信号:250Ω
模拟量输出阻抗:
电压型信号:≥5KΩ
电流型信号:≤500Ω
66:模拟量模块的电源指示灯正常,为何信号输入灯不亮?
模拟量模块的外壳按照通用的形式设计和制造,实际上没有模拟量输入信号指示灯。凡是没有印刷标记的灯窗都是无用空置的。
67:为何模拟量值的低三位有非零的数值变化?
模拟量的转换精度为12位,但模块将数模转换后的数值向高位移动了三位。如果将此通道设置为使用模拟量滤波,则当前的数值是若干次采样的平均值,低三位是计算得出的数值;如果禁用模拟量滤波,则低三位都是零。
68、EM231TC是否需要补偿导线?
EM231TC可以设置为由模块实现冷端补偿,但仍然需要补偿导线进行热电偶的自由端补偿。
69、EM231TC模块SF灯为何闪烁?
如果选择了断线检测,则可能是断线。应当短接未使用的通道,或者并联到旁边的实际接线通道上。或者输入超出范围。
70、M区数据不够用怎么办?
回答:有些用户习惯使用M区作为中间地址,但S7-200CPU中M区地址空间很小,只有32个字节,往往不够用。而S7-200CPU中提供了大量的V区存储空间,即用户数据空间。V存储区相对很大,其用法与M区相似,可以按位、字节、字或双字来存取V区数据。例:V10.1,VB20,VW100,VD200等等。
1、安装DIN导轨,每隔75毫米将导轨固定到安装板上。
2、将CPU挂到DIN导轨上方。
3、拉出CPU下方的DIN导轨卡夹,以便能将CPU安装到导轨上。
4、向下转动CPU,使其在导轨上就位。
5、推入卡夹,将CPU锁定到导轨上。
1、继电器和晶体管输出工作原理 图1 电磁式继电器结构图 表1 输出端口规格 表2 继电器使用寿命
继电器控制接触器等感性负载的开合瞬间,由于电感具有电流具有不可突变的特点,根据U=L*(dI/dt),将产生一个瞬间的尖峰电压在继电器的两个触点之间,该电压幅值超过继电器的触点耐压的降额;继电器采用的电磁式继电器,触点间的耐受电压是1000V(1min),若触点间的电压长期的工作在1000V左右的话,容易造成触点金属迁移和氧化,出现接触电阻变大、接触不良和触点粘接的现象。动作频率越快现象越严重。瞬间高压如下图2所示,持续的时间在1ms以内,幅值为1KV以上。晶体管输出为感性负载时也同样存在这个问题,该瞬时高压可能导致晶体管的损坏。 ![]() 图3 PLC输出触点的保护电路 (1) 一定要关注负载容量。输出端口须遵守允许大电流限制(如表1所示),以保证输出端口的发热限制在允许范围。继电器的使用寿命与负载容量有关,当负载容量增加时,触点寿命将大大降低(如表2所示),要特别关注。 (3) 一定要关注动作频率。当动作频率较高时,建议选择晶体管输出类型,如果还要驱动大电流则可以使用晶体管输出驱动中间继电器的模式。当控制步进电机/伺服系统,或者用到高速输出/PWM波,或者用于动作频率高的节点等场合,只能选用晶体管型。PLC对扩展模块与主模块的输出类型并不要求一致,当系统点数较多而功能各异时,可以考虑继电器输出的主模块扩展晶体管输出或晶体管输出主模块扩展继电器输出以达到佳配合 |