西门子6ES515-2TM01-0AB0型号介绍
1 概述:
随着我国经济的发展,制浆造纸业已经成为我国工业经济增长的重要支柱,早期的造纸生产产量较低,对电控没有太高要求,随着造纸规模的扩大,对造纸机的产量及速度要求越来越高,从而对纸机配套电控系统的要求也越来越高。早期的调速以直流调速为主,但维护工作量较大,70年代后,随着电力电子控制技术的飞速发展,使得交流调速系统的调速性能可以与直流调速系统的调速性能相媲美。
本文采用ABB公司ACS800型变频器和西门子S7-400 PLC组成一套目前我国国产造纸机中车速较高的纸机传动控制系统。通过可编程逻辑控制器(PLC)和变频器之间的通信,控制传动点的启动、停止、增速、减速、紧纸等操作,由软件自动实现负荷分配、速度链等功能,充分满足造纸工艺及电控的需要。
2纸机传动对电气控制系统的要求
该机结构简图如图1示。纸机为4400/650 m/min高强瓦楞纸机。
纸机由长网部、真空吸移+四辊二压区复合压榨部、干燥部、压光部、卷取部组成。共16个传动点,总功率3240KW,为了能生产出质量标准较高的产品,纸机对电气传动系统提出如下的要求:
(1) 纸机工作速度要有较大的调节范围,为了使造纸机具有较强的产品、原料的适应性(如打浆度、浆料配比与种类、定量、纸种等),纸机传动可在较大的范围内均匀的调节速度;
(2) 车速要有较高的稳定裕度,总车速**、下降要平稳。为了稳定纸页的定量和和质量、减少纸幅断头,要求纸机稳速精度为±0.01%;
(3) 速差控制,速比可调、稳定。纸幅在网部和压榨部时,其纵向伸长横向收缩,而在烘干部时,两向都收缩,因此纸机各分部的线速度稍有差异,即速差。速差在一定范围内变化不引起纸页质量的突变。此时的速差对成纸来说,主要影响纸页的克重。误差应控制在0.1%以内保持纸张不被拉断。纸机各分部的速比的大波动值与浆料配比、定量、车速、生产工艺、纸页收缩率及分部之间的纸幅无承托引段的张力等因素有关。因此,造纸机各相邻分部间应有适当的速差来形成良好的纸页。
(4) 各分部点具有速度微升、微降功能,引纸操作时的紧纸、松纸功能。具有刚性联结或软联结的传动分部,如网部、压榨部、施胶部,能进行负荷动态调节。防止某点的速度发生变化而引起负荷在分部内动态转移,如不及时进行自动的调节(因为现在使用的变频器基本上都不具备长期四象限运行能力),有的传动点负载可能超过它自身的功率范围引起过流发生,有的传动点被拖动而引起过高的泵升电压,导致变频器过压而保护跳闸,甚至损坏变频器和损坏毛布。同时在这些分部中,应具有单动、联动功能,并可以同时起动、停止。必要的显示功能,如线速度、电流或转矩、运行信号、故障信号等;
(5) 爬行速度。 为了检修和清洗聚酯网、压榨毛毯、干网以及各分部的运行工况,各分部应有15~50m/min可调的爬行速度,但不宜在此速度下长时间运行;
(6) 纸机为恒转矩负载性质,要选择具有恒转矩控制性能的变频器,并具有较高的分辨率,良好的通讯能力,并采用PLC作为控制单元,实现对整个控制系统的可靠、协调的控制,以满足纸机控制系通正常工作的需要。
3 控制系统硬件设计
系统原理图如图2所示 。文中只选一个传动点为例进行说明,为构成传动点闭环控制及PROFIBUS总线网络通讯控制系统,需安装ABB的反馈卡及DP总线通讯卡,图中NTAC与NPBA。该纸机传动
系统采用由S7-400 PLC作为系统的控制中心;由功能较强大的ABB公司ACS800变频器为驱动单元,频率分辨率为0.01Hz以上;变频专用电机作为执行单元;欧姆龙编码器提供速度反馈信号,使纸机传动在速度闭环运行模式下,从而使控制系统稳速精度达到0.01%。由PLC通过西门子PROFIBUS协议、
PROFIBUS网络与变频器实现速度链功能、速差控制、负荷分配功能、总车速升、降、各分部点的速度升、降及紧纸、松纸等功能,较理想地满足纸机正常工作的需求。
4 控制系统软件设计
控制系统的软件设计基于以下原则:1 程序模块化结构化设计,其中负荷分配、速度增减、初始化、紧纸、速比计算、校验、数据发送、接收等作为子程序调用;2 程序采用循环扫描的方式对传动点进行处理,简化程序,**程序执行效率;3 采用中断子程序进行数据的发送、接收;确保数据的准确快速的传输;4 必要的软件保护措施,以免造成重大机械损害。
因此该程序通用性强,可移植性好,使用不同的变频器,只须进行相应协议的格式的定义。即数据发送、接收、校验程序的相应修改即可,满足纸机运行的需要。主程序流程图如图3所示
4.1 速度链设计及速差控制
速度链结构采用二叉树数据结构算法,完成数据传递功能。首先对各传动点位置进行数学抽象,确定速度链中各传动点编号,此编号应与变频器内部地址一致。然后根据二叉树数据结构,确定各结点的上下、左或右编号。即任一传动点由3个数据(“父子兄”或“父子弟”)确定其在速度链中的位置,填入位置寄存器数值。如图4所示。
该传动点速度给变频器后,访问位置寄存器,确定子寄存器结点号,若不为0,则对该经点进行相应处理,直到该链完全处理完;再查兄弟寄存器结点号,处理另一支链。所以只须对位置寄存器初始化,即可构成具有任意分支结构的速度链。
算法设计采用了调节变比的控制方法。如图5示,纸机二压点作为速度链中的主节点,它的速度就是整个纸机的工作车速。在 PLC内,我们通过通信检测到车速调节信号则改变车速单元值,同时送给驱网、吸移、真压、一压分部,其速度值乘以相应的速比,即是该传动点的速度运行值。若某一分部速度不满足运行要求,说明该分部变比不合适,可通过操作该分部的加速、减速按钮实现,PLC检测到按钮信号后调整了变比,使其适应传动点间的速差控制要求。相当于在PLC内部有一个高精度的齿轮变速箱,可以任意无级调速。
若正常生产中变比合适,需要紧纸、松纸操作时,按下该分部紧纸、松纸按钮,PLC将对应在速度链上附加一正或负的偏移量则实现紧纸、松纸功能。同时送下一级计算,依此类推,构成速度链及速差控制系统。前一级车速调整,后面跟随调整,后级调整不影响前级,适应纸机操作引纸的顺序要求。速度链的传递关系由图5来体现,由PLC软件实现。
4.2 负荷分配原理与设计
在多电机传动过程中要求各传动点电机负载率相同,即δ=Pi/Pie相同(Pi为i电机所承担负载功率,Pie为电机额定功率)。而且在负荷分配调节过程中不能影响其它各分部的速度。所以我们采用速度链主链与子链相结合的设计方法。
负荷分配控制中我们选取一台电机作为本组主电机,连接在速度链上,其它电机作为子电机,形成子链控制结构。以三点负荷分配为例如图6所示,编号为0和4是需要负荷分配的前级和后级,负荷分配以1为主,2、3作为1的从机,处于速度链的子链上。P1e、P2e、P3e为三台电机额定功率,Pe为额定总负载功率,Pe= P1e+P2e+P3e 。P为实际总负载功率,P1、P2、P3为电机实际负载功率,则P=P1+P2+P3。系统工作要求 P1=P*P1e/Pe ,P2=P*P2e/Pe,P3=P*P3e/Pe。负荷分配的目的就是使P1、P2、P3满足上述要求。
在实际控制当中,电机功率是一间接量。实际控制近似以电机定子电流代替电机功率。
其中: ILi 第I台电机出力电流;
Iei 第I台电机额定电流;
IL 负载总电流;
负荷分配就是依据电机电流,利用上述原理对控制的各台电机进行调节,使电机电流百分比一样,即各电机转矩电流和额定电流比值应相等。这样完成负荷分配的自动控制。本文负荷分配分三部分(如图五虚线范围内部分)。1)驱网辊与伏辊; 2)吸移辊、真空压榨辊与一压辊与二压辊; 3)施胶上辊与施胶下辊。负荷分配的软件实现,首先基于合理的速度链结构,如图5所示。采用主链与子链相结合的结构,使具有负荷分配的传动点组在子链结构上,进行负荷动态调整时不影响其它传动点的状态。
在纸机传动系统中,因为在有机械相联系的传动点由于所处位置不同,毛布的包角大小不一样,承受的载荷在不同的工作状态下不一样,是一个变量。在实际控制当中,由于电机功率是一间接量,实际控制电机定子电流或转矩代替电机功率,进行读取计算、调节。在一组负荷分配传动点中选取包角较大且功率较大的传动点作为主点,其余各点利用PLC通过总线读取电机电流或转矩,分别与主点电流或转矩进行比较,并以PID调节算法,相应调节从点变频器的输出,使其电流或转矩百分比与主点一致,而达到负荷分配的自动分配的目的。
为了保护机械装置和避免PLC调节过于频繁,在软件中设置上下限幅值。如果负荷不平衡度大于3%,PLC才进行调整。如负荷分配不平衡度调整量设置太小,容易造成震荡。如果大于不平衡上限幅值,进行停机处理,以防止机械损害发生。
5 结 语
造纸机传动系统各个传动点既要保持一定的速度一致性,又要有一定的速差。同时具有机械相联系的传动点又要有负荷平衡即负荷分配功能。ABB变频器具有直接转矩控制功能,具有很高的可靠性和和完善的功能实现,通过丰富的参数组态和附加控制工艺板与PLC通过PROFIBUS协议通讯、协调工作可满足中、高速造纸机对传动系统要求大速比变化、高稳态精度等控制性能的需要。该纸机在山东银河纸业集团运行已过一年,控制系统稳定,纸机运行可靠,稳速精度和动态响应性能都达到了用户较满意的效果。
随着舞阳钢铁公司新的100万吨生产线的建设,作为新生产线炼钢部分的配套工程,在原来两座石灰竖窑的基础上,新建两座单窑生产能力150T/D的石灰竖窑。石灰是炼铁、炼钢生产中必不可少的原料之一。石灰品质的好坏直接影响着钢铁的质量,因此,采用**的自动控制系统,对于**炼铁炼钢的产量和质量,有十分重要的意义。
一、 自控系统设计要求:
石灰窑生产的原料主要是石子(石灰石),成品是生石灰。在竖窑的加料口加入石灰石,经过煤气燃烧,煅烧成生石灰,输出到成品料仓。控制系统主要包括石灰石筛选、上料系统,煅烧系统,冷却空气循环系统,助燃空气循环系统,废气除尘循环系统,成品出窑、运输系统以及配套的煤气加压泵站、液压站。新建石灰窑工艺设计**,自动化程度高,所有设备具备机旁手动、半自动、全自动三种控制模式,并具备设备故障诊断报警功能。
根据用户和工艺设计的要求,石灰窑的控制系统分为三级监控系统。分别为车间生产管理级、窑前生产操作级 、现场控制级。
1、 车间生产管理级
面向生产管理人员,使用微软的SQL 2000作为数据服务器,对生产中的各种数据进行存储、管理、产生各种生产报表。
2、 窑前生产操作级
面向生产操作人员,由两套工业控制计算机作为HMI,在HMI的监控画面上显示各种设备的工况参数,并通过HMI来对生产过程进行控制调节。根据生产情况可选择半自动、全自动工作模式。当生产中出现异常时,在HMI上显示报警信息。正常情况下,两台HMI分别监控两座竖窑的情况,在一个HMI出现问题时,可互为冗余,确保生产的正常进行。
3、现场控制级
面向生产过程,由过程控制器以及现场智能I/O处理器、各种模板构成,为基础测控级。完成生产现场大量压力、温度、**的采集和处理,对生产过程进行控制。自动控制系统通过对由振动给料筛、板链式**机、电子秤量斗、单斗**机,拖板出料机、卸料闸板、振动给料机构成的竖窑筛选、加料、卸料系统的自动控制,实现原料的筛选、加料、卸料的自动化。在出料过程中为保证石灰竖窑的密闭型,必须确保上下卸料闸板只有一个同时处于开启状态。煤气加压机、助燃风机、冷却风机是变频器控制下的罗茨风机,通过对煤气压力、助燃空气压力、冷却空气压力的PID调节,达到恒压控制的要求。控制系
统不间断的对煤气压力进行监视,当出现煤气压力过低,危及到生产的安全进行时,立即自动切断煤气截止阀。按照工艺要求窑顶废气压力必须控制在-0.2Kpa到+0.2Kpa的允许范围内,控制系统通过对引风机入口阀开口度的PID调节,达到设计要求。控制系统还包括除尘、液压站、带式输送机、刮板机、以及各种电动阀门的控制。
二、系统硬件选型及特点
为了满足以上的设计要求,在本项目中我们选择了美国OPTO22公司推出的基于以态网的过程自动化控制器SNAP-PAC-S1。
SNAP-PAC-S1过程控制器CPU为主频266MHz、32位、带浮点协处理器,内存为32M的RAM、8M电池后备RAM、16M的Flash EEPROM,提供强大的处理能力和运算功能。PAC控制器可以同时运行32个任务,现场智能I/O单元完成PID功能,适应实时工业控制、远程监控、数据采集的要求。能够处理多种自动控制任务,包括开关量、模拟量、串行数据处理、PID调节。PAC控制器有支持多种通讯协议,带有2个RS-232接口、1个RS-485接口。
PAC-S1控制器带有两个独立的10/100M自适应Ethernet网络接口,通过软件配置及可以实现控制器、智能I/O处理器的冗余,也可以通过网络分段的办法把控制网络和生产管理网络可靠隔离。
由于本项目使用的开关量I/O点比较多,开关量选择的是32通道输入模块SNAP-IDC32和32通道输出模块SNAP-ODC32,以及配套的信号转接板SNAP-IDC-HDB和SANP-ODC-HDB。根据工艺的需要智能I/O处理器选择了带PID调节的SNAP-B3000-ENET。
本系统选用的硬件产品及系统网络配置图如下所示:
控制系统共有输入、输出信号近800点,其中包括开关量输入/输出信号、4-20mA输入/输出信号热电偶、热电阻信号。
1.控制器 SNAP PAC-S1 1块
2.智能I/O处理器 SNAP B3000-ENET 2块
SNAP ENET-S64 4块
3.底板 SNAP B16M 2块
SNAP M64 4块
4.开关量模块 SNAP IDC32 14块
SNAP ODC32 6块
5.热电偶模块 SNAP AITM 11块
SNAP AITM-2 9块
6.模拟量输入 SNAP AIMA-4 11块
7.模拟量输出 SNAP AOA-23 6块
8.热电阻模块 SNAP AIRTD 20块
三、软件开发及系统功能
本项目使用得工业组态软件是OPTO22公司的SNAP PAC控制器软件开发包ioProject Professional。ioProject Proessional是一套功能齐全的控制器和HMI开发软件包,快速、高效的OPC SERVER和硬件配置诊断工具包,使用该软件包可以完成控制项目的全部功能。其中包括控制策略开发软件ioControl,HMI开发软件ioDisply,硬件配置诊断软件,同时提供的OPC Server为第三方软件提供数据接口。
1、ioControl是OPTO22的可视化编程、调试工具,是一种基于流程图的语言,它使开发控制程序变得容易而且直观。同时还提供完整、强大的命令集以及Optobbbbbb编程语言用于复杂的工业控制应用。使用ioControl用户很方便对硬件进行组态、编程、下载、在线跟踪调试。
在本系统中不仅要对竖窑生产过程中的各种工况监视,还要对各种设备进行控制。这里对主要的加料出料系统的工艺及控制流程图加以说明。
竖窑加料设备和工艺
竖窑的上料设备包括原料振动给料筛、电子称量斗及控制箱、单斗**机。原料通过给料筛---〉电子称量斗---〉单斗**机---〉竖窑的工艺流程,完成石灰竖窑原料的筛选、称量、加料过程。
在生产过程中,当系统通过窑顶料位计监测到窑顶料位低于设定值时,通过控制振动给料筛把合适的原料加入电子称量斗,在加料过程中通过电子称量斗控制箱上的称重二次仪表对加料量进行监测。当加料量预计达到窑顶料位设定值时停止加料。具体的窑顶料位设定值、一次大加料量可根据实际情况在一定的范围内进行调节。由于**机料斗的容,一次加料量不能超过1.5吨。
竖窑卸料设备和工艺
竖窑系统的出料设备主要包括托盘式出料机、上部卸料闸板、下部卸料闸板、振动卸料机。因为上部储料斗的容量为1.5吨,决定了每次单板出灰机出料量不能超过1.5吨。为了保证上部、下部出料闸板的可靠动作,每次出料保证1 吨左右。在托盘速度一定的情况下,每次换向出料70公斤左右。根据上面的数据以每座竖窑每天产量150吨,每小时出6吨白灰计算,每10 分钟出1吨料比较合适。出料的时间和频率可根据产量进行适当的调整。由于本出料系统的特点 ,在出料过 程中严禁上部、下部卸料闸板同时开启。通过上、下闸板的连锁动作,确保竖窑内部和竖窑外部的隔离。
当系统需要出料时出料系统动作顺序如下:
托盘出料机换向14次左右出料1吨到上部储料斗。
首先确认托盘出料机已停,然后关闭下部卸料闸板。
确认下部卸料闸板已正常关闭到位后,开启上部卸料闸板。
确认上部卸料闸板已正常开启到位后延时20秒,保证上部储料斗的石灰全部倒入下部储料斗。
关闭上部卸料闸板
确认上部卸料闸板关闭到位后,开启下部卸料闸板,同时打开振动卸料机,通过带式输送机把成品送入后部料仓。
2、ioDisplay是OPTO22在bbbbbbs操作系统下的人机接口、报警、趋势软件开发工具,与Opto22运行在SNAP系列控制器上的ioControl控制策略共同工作。让你很容易的创建图形化操作界面,去监视、操作、管理运行在Opto22工业控制器上的应 用程序。能够及时显示控制器上的实时信息,通过设置报警点去监视关键量的变化,使用趋势图来反应相应量的变化趋势 。ioDisplay共享ioControl的变量数据库,在ioControl定义的内部、外部变量可以直接使用。可以根据不同的用户设定不同的权限,可以很方便进行管理。
在本项目的 HMI中包括如下的功能:
竖窑加料出料监控画面
竖窑煅烧监控画面
竖窑除尘系统监控画面
原料、成品输送监控画面
报警、趋势图画面
四、总结
通过SNAP PAC控制器在石灰窑自动控制系统应用,加深了对PAC系统的理解。**了生产的自动化水平,在减轻劳动强度的基础上,大大**了生产效率。