6ES7516-3AN02-0AB0参数详细
数码相机的发展真可谓一日千里,近来各种新的感光技术纷纷涌现。很多数码相机生产厂商大肆宣扬自己的产品像素有多少多少高,画质怎么怎么好。顾客在选购数码相机时也比较困惑,心里没底。为了让大家对目前市场上常见的三种数码相机感光芯片—— CCD、SUPER CCD、CMOS有一个大概的了解,我们对这三种感光元件做了个总结,欢迎各位读者和我们进行探讨。大部分数码相机使用的感光元件是 CCD(Chagre Couled Device),它的中文名字叫电荷耦合器,是一种特殊的半导体材料。他是由大量独立的光敏元件组成,这些光敏元件通常是按矩阵排列的。
光线透过镜头照射到 CCD上,并被转换成电荷,每个元件上的电荷量取决于它所受到的光照强度。当你按动快门,CCD 将各个元件的信息传送到模/数转换器上,模拟电信号经过模/数转换器处理后变成数字信号,数字信号以一定格式压缩后存入缓存内,此时一张数码照片诞生了。然后图像数据根据不同的需要以数字信号和视频信号的方式输出。目前主要有两种类型的CCD光敏元件,分别是线性CCD和矩阵性CCD。线性CCD用于高分辨率的静态照相机,它每次只拍摄图象的一条线,这与平板扫描仪扫描照片的方法相同。这种CCD 精度高,速度慢,无法用来拍摄移动的物体,也无法使用闪光灯。因此在很多场合不适用,不在我们讨论的范围里。
另一种是矩阵式 CCD,它的每一个光敏元件代表图象中的一个像素,当快门打开时,整个图象一次同时曝光。通常矩阵式CCD用来处理色彩的方法有两种。一种是将彩色滤镜嵌在CCD矩阵中,相近的像素使用不同颜色的滤镜。典型的有G-R-G-B和C-Y-G-M两种排列方式。这两种排列方式成像的原理都是一样的。在记录照片的过程中,相机内部的微处理器从每个像素获得信号,将相邻的四个点合成为一个像素点。该方法允许瞬间曝光,微处理器能运算地非常快。
这就是大多数数码相机 CCD的成像原理。因为不是同点合成,其中包含着数学计算,因此这种 CCD大的缺陷是所产生的图象总是无法达到如刀刻般的锐利。另一种处理方法是使用三棱镜,他将从镜头射入的光分成三束,每束光都由不同的内置光栅来过滤出某一种三原色,然后使用三块CCD分别感光。这些图象再合成出一个高分辨率、色彩**的图象。如300万像素的相机就是由三块300万像素的CCD来感光。也就是可以做到同点合成,因此拍摄的照片清晰度相当高。该方法的主要困难在于其中包含的数据太多。在你照下一张照片前,必须将存储在相机的缓冲区内的数据清除并存盘。因此这类相机对其他部件的要求非常高,其价格自然也非常昂贵。
SUPER CCD 是由富士公司推出的,它并没有采用常规正方形二极管,而是使用了一种八边形的二极管,像素是以蜂窝状形式排列,并且单位像素的面积要比传统的 CCD大。将像素旋转45度排列的结果是可以缩小对图像拍摄无用的多余空间,光线集中的效率比较高,效率增加之后使感光性、信噪比和动态范围都有所提高。富士公司宣称,SUPER CCD 可以实现相当于ISO 800的高感度,信噪比比以往增加30左右,颜色的再现也大幅改善,电量消耗减少了许多。富士公司宣称SUPER CCD可与多40%像素的传统CCD的分辨率相媲美,SUPRE CCD 打破了以往CCD 有效像素小于总像素的金科玉律,可以在 240万像素的 SUPER CCD上输出430万像素的画面来。因此,富士公司和他们的SUPER CCD一推出即在业界引起了广泛的关注。
在传统 CCD上为了增加分辨率,大多数数码相机生产厂商对民用级产品采取的办法是不增大 CCD尺寸,降低单位像素面积,增加像素密度。我们知道单位像素的面积越小,其感光性能越低,信噪比越低,动态范围越窄。因此这种方法不能无限制地增大分辨率。如果不增加CCD 面积而一味地提高分辨率,只会引起图象质量的恶化。但如果在增加CCD 像素的同时想维持现有的图象质量,就必须在至少维持单位像素面积不减小的基础上增大CCD 的总面积。但目前更大尺寸CCD加工制造比较困难,成品率也比较低,因此成本也一直降不下来。
传统CCD中的每个像素由一个二极管、控制信号路径和电量传输路径组成。SUPER CCD采用蜂窝状的八边二极管,原有的控制信号路径被取消了,只需要一个方向的电量传输路径即可,感光二极管就有更多的空间。SUPER CCD在排列结构上比普通CCD要紧密,此外像素的利用率较高,也就是说在同一尺寸下,SUPER CCD的感光二极管对光线的吸收程度也比较高,使感光度、信噪比和动态范围都有所提高。
那为什么SUPER CCD的输出像素会比有效像素高呢?我们知道CCD对绿色不很敏感,因此是以G-B-R-G来合成。各个合成的像素点实际上有一部分真实像素点是共用,因此图象质量与理想状态有一定差距,这就是为什么一些高端级数码相机使用3CCD 分别感受RGB三色光的原因。而SUPER CCD通过改变像素之间的排列关系,做到了R、G、B像素相当,在合成像素时也是以三个为一组。因此传统CCD 是四个合成一个像素点,其实只要三个就行了,浪费了一个,而SUPER CCD就发现了这一点,只用三个就能合成一个像素点。也就是说,CCD每4个点合成一个像素,每个点计算4次;SUPER CCD每3个点合成一个像素,每个点也是计算4次,因此SUPER CCD 像素的利用率较传统CCD高,生成的像素就多了。
科学是要以事实来说话的,再有道理的理论没有事实基础还是一句空话。经过我们反复对富士SUPER CCD的几款民用级数码相机试拍后发现,至少对民用级的SUPER CCD来说,在其大分辨率的图象质量并没有人们想象地那么好。除了色彩还原比较艳丽外,我们可以在蓝天和暗部细节发现有明显的噪音信号,成像清晰度一般。这就说明240万像素的民用级SUPER CCD无法达到其标称的430万输出像素。那么240万像素的SUPER CCD到底相当于多少像素的CCD呢?根据上一段的陈述,我认为SUPER CCD对像素的利用率比CCD高33%,因此其输出像素也应该比CCD高33%。富士FINEPIX 4900的总像素为240万像素,根据我的估算,它的输出像素大概相当于320万(240×133%=320万)。而4900标称的输出尺寸是430万像素,那么这110万像素是怎么多出来的呢?我想可能是使用了插值技术。这就可能是为什么我们在以100%的尺寸看SUPER CCD拍摄的照片总不是很清楚的原因了。如果要客观公正地对待使用SUPER CCD的FINEPIX4900、FINEPIX4700等相机就应该将其看作一部320万像素的数码相机。
我们对CMOS的认识是从去年佳能公司发布EOS D30的准级数码机身开始的。当时许多业内人士都大吃一惊,对采用这种廉价的材料来做感光元件感到不可思议,认为CMOS的成像质量无法满足较高要求的用户的需要。那用CMOS做的感光元件在成像质量上真的一无是处吗?还是让我们先来了解一下什么是CMOS吧。CMOS即互补性金属氧化物半导体,其在微处理器、闪存和ASIC(特定用途集成电路)的半导体技术上占有重要的地位。CMOS和 CCD一样都可用来感受光线变化的半导体。CMOS主要是利用硅和锗这两种元素所做成的半导体,通过CMOS上带负电和带正电的晶体管来实现基本的功能的。这两个互补效应所产生的电流即可被处理芯片纪录和解读成影像。
CMOS针对CCD主要的优势就是非常省电。不像由二极管组成的CCD,CMOS电路几乎没有静态电量消耗,只有在电路接通时才有电量的消耗。这就使得CMOS的耗电量只有普通CCD的1/3左右,这有助于改善人们心目中数码相机是"电老虎"的不良印象。我们知道在佳能 EOS系列AF相机上,CMOS一直在测光对焦系统中使用。佳能在这方面有雄厚的技术力量和丰富的经验。发展到已经比较容易地以较低的成本制造较大大尺寸的CMOS感光芯片,并且CMOS可以将影像处理电路集成在芯片上。CMOS主要问题是在处理快速变化的影像时,由于电流变化过于频繁而过热。暗电流抑制得好就问题不大,如果抑制得不好就十分容易出现杂点。D30 有专门的回路控制暗电流,在长于1秒的曝光时降噪系统会自动工作,可以从很大程度上降低噪点的产生。
此外,CMOS与CCD 的图像数据扫描方法有很大的差别。举个例子,如果分辨率为 300万像素,那么CCD传感器可连续扫描300万个电荷,扫描的方法非常简单,就好像把水桶从一个人传给另一个人,并且只有在后一个数据扫描完成之后才能将信号放大。CMOS传感器的每个像素都有一个将电荷转化为电子信号的放大器。因此,CMOS传感器可以在每个像素基础上进行信号放大,采用这种方法可节省任何无效的传输操作,所以只需少量能量消耗就可以进行快速数据扫描,同时噪音也有所降低。这就是佳能的像素内电荷完全转送技术。
我们通过INTERNET查看了大量由CANON EOS D30所拍摄的照片,发现 CMOS的成像效果一点也不比传统 CCD差。这种能耗低、制造相对容易的感光芯片如果能在影像的锐利度、动态范围等方面再做进一步的努力,相信CMOS是未来数码相机的发展方向。
20多年来,机器视觉的开创者们一直在预测什么时候能够出现可以从零件箱中任意拣选零件的机械手。也就是说利用机器视觉导向的机械手,确定零件在一个零件箱内或容器内的位置,然后从一大堆胡乱堆放的零件中抓取某个零件。
早期开发这一技术的人们认为,由于随机“零件拣选”系统具有高度的灵活性,因此会给制造厂节约很大的费用,工人再也不需要装卸来自供货商的零件箱。在加工生产线上,昂贵的工装卡具、工具及以零件为目标的进料器可以被随机化“箱中拣选零件”的系统所取代。
可惜,上世纪80年代初,这一被认为可行的技术不得不面对残酷的现实。在实验室开发的“拣选”系统无法转化为工厂的实际应用。人们发现有时候你会碰到部分零件重叠,照明的变化也会影响到“拣选”的工作进度。当时的计算机在处理大量数据方面也遇到了障碍,使问题复杂化。
后,只好先研究不太复杂的二维机械手导向方案,即从运动的传送带上捡取单一的零件,这相对来说比较通用。而普遍的随机“拣选”应用方案始终没有实现,直到这仍然是工业界的一项挑战。不过,现在有越来越多的迹象表明以机器视觉为导向的机械手“拣选”越来越接近现实。机械手经销商,包括Fanuc公司、Motman公司和Staubli公司都推出了“拣选”系统。
丰田汽车制造厂已经在其发动机零件加工线上使用了5个机械手的“拣选”系统,系统采用ABB公司的机械手,配有三维图像技术,该技术由Braintech 公司提供。有人说零件全面实行随机“拣选”方案是不切实际的,如弹簧或几何形状复杂的零件就不宜在早期采用“拣选”方案。相反,经销商更关注比较简单和几何形状容易识别的零件,其中包括圆柱形或圆形的零件。丰田公司的系统只属于“半随机”或“半限制”性的“拣选”系统,也就是说在这些系统中,零件并非全部能任意抓取,零件在箱中是松散分布的。
在TRW公司,当制动转子铸件从供货商抵达工厂时,零件堆放在一起,相互之间没有什么东西隔开,装运时易于搬动。TRW公司过去依靠人工操作,加上提升装置协助装卸铸件。在某些情况下,工厂还使用非视频装备的零件拣选系统。非视频零件拣选系统每抓一个零件需要20秒钟,但由于零件在木箱中不断变换,也许会因为抓取失误,而不得不再用20秒钟从木箱中捡取不同的零件。
非视频系统也许对于低批量生产线来说效果很好,因为铸件的抓放时间为每60秒钟一个。但在工厂的新生产线上,其所允许的零件抓放周期为15秒钟,于是不许采用一套有视频导向的“拣选”系统。
JMP公司为TRW公司提供了两套系统。每套系统配置了一套由Fanuc公司提供的Fanuc 710ib-45机械手和一台带有VisionPro软件的摄像机,该机由Cognex公司提供,还配有来自Shafi公司的Reliabot软件,由其控制着机械手/视频之间的通信及机械手的导向功能。JMP公司的生产经理Ken 说,Cognex公司的摄像头安装在机械手臂上,可用于确定零件的X和Y坐标,机械手臂上还装有红外(IR)传感器,用于寻找零件箱中某一堆零件层的高度。
当操作员将装有堆叠铸件的零件箱放入系统时,触动起动按钮,机械手开始升到一个高度,摄像头摄取图像,包括确定所有堆放零件的X-Y位置,然后用IR传感器确定每一堆零件的高度,之后决定夹取顺序。如果发现有零件的高度不正常,它会继续探测,直至其水平与其他堆叠零件的水平一致。
由于采用了视频导向系统,即使零件堆放箱倾斜了20度,机械手仍可抓取零件。经过特殊设计的受动器与随动机构连接,保证部分零件的朝向和角度适合于零件的夹取。被夹取的零件由机械手放到传送器上,然后传送到加工系统上,整个过程在12秒周期时间内完成,满足了TRW公司的15秒要求。
在开发TRW系统的过程中,按照的说法将它叫做“2.5维视频”系统,它能找到一个零件的X、Y和Z坐标,同时使用端部受动器,以使补偿零件滚动、节距和偏转等变化。而三维系统则采用两台摄像机,以立体模式工作,它可以在6度的自由范围内确定零件的位置。
如果是形状复杂的零件,如支管或变速箱零件就需要采用“半随机”方案,在零件箱内需要特别装置,使零件保持一定的方向性。但圆形或圆柱形一类形状相对简单的零件,如制动转子,无论采用半随机或全随机模式都可捡取。
Fanuc的“拣选”技术依赖于一台固定安装于零件箱上方的摄像头,通过这一摄像头可以找到“大致位置”,鉴别和排列15个待夹取的候选件。其软件通过匹配算法,将看到的零件从多个方向和角度与数据库中待捡取的零件试样进行比较,然后找到需要夹取的零件。安装在机械手上的一个Fanuc传感器,用于各个零件的“精密定位”。摄像头首先寻找X和Y坐标位置以及零件的名称,同时与摄像头成一定安装角度的激光器根据三角测量技术提供Z坐标、偏转和节距。机械手运行到由“大致定位”鉴别出个零件,然后检查;如果是它所看到的,机械手就夹取这一零件,如果不是,机械手再移动到第二个零件上。
由于多种原因可能会造成系统错过所要捡取的零件,错过的越多,系统搜索零件所花的时间就越长。通过对系统零件不断地精密调整后,Fanuc系统随机抓放零件所需的平均工作周期已从2002年的22秒钟下降到的15秒钟。
Motoman公司已与Shafi公司在“拣选”技术的应用方面形成了战略关系,关于这一技术,人们已经等待了很长时间,但“拣选”技术并不是一剂良药,也不是一切应用领域的目标。人们应该认识到它对某些应用领域是有意义的,但对其他的应用领域就不一定。
Shafi公司也有同感。例如在某些“拣选”应用领域,可靠的抓放操作需要两个过程。你需要将零件从箱中取出来,然后放下或重新夹起,或者进行其他的操作,总之是用机械手将零件精密地放到目标位置上。在工厂,人们所关心的是能否将它捡取,是否能在每隔X秒钟的时间内使它**就位。
机械手随机“拣选”的周期时间取决于机械手的工艺流程,以及在特定的应用领域内,机械手需要移动的距离。为了使“拣选”系统切实可行,必须使摄像头在2或3秒的时间内完成确认。对于几何形状简单的零件而言,Shafi公司已经达到了目标,时间降低到4至6秒,主要是因为他们采用了较快的处理器,算法也有所改进。
从某种程度而言,“拣选”方案是否获得成功,关键在于零件的不同几何形状和应用要求,Shafi公司开发的“拣选”系统依赖于固定安装的摄像机、机械手上安装的摄像机以及那些使用激光器的照明装置。
另一项技术涉及到获取零件的三维位置,即以很快的速度,摄取零件的2至3个图像,每个图像采用不同的照明,以便协助确定其三维位置。尤其是当零件的一部分被挡住时,采用这一技术特别有效。
如果某种应用领域允许的话,好还是采用固定安装的摄像机方案。在一个零件被拣取后,摄像头将移到下一个被抓取的零件上,同时机械手抓放另一个零件。而如果是安装在机械手上的移动摄像头可能会遇到被碰撞的风险,如碰到零件箱或其它零件,而固定安装的摄像头则不用操心这个问题。
仪器仪表 防雷端口 端口防护
静电放电(ESD)和电快速瞬变脉冲群(EFT)对仪器仪表系统会产生不同程度的危害。静电放电在5~200MHz的频率范围内产生强烈的射频辐射。此辐射能量的峰值经常出现在35MHz~45MHz之间发生自激振荡。许多信息传输电缆的谐振频率也通常在这个频率范围内,结果电缆中便串入了大量的静电放电辐射能量。电快速瞬变脉冲群也产生相当强的辐射发射,从而耦合到电缆和机壳线路。当电缆暴露在4~8kV静电放电环境中时,信息传输电缆终端负载上可以测量到的感应电压可达到600V,这个电压远远超出了典型数字仪器仪表的门限电压值0.4V,典型的感应脉冲持续时间大约为400纳秒。
仪器仪表在使用中经常会遇到意外的电压瞬变和浪涌,从而导致电子设备的损坏,损坏的原因是仪器仪表中的半导体器件(包括二极管、晶体管、可控硅和集成电路等)被烧毁或击穿。据统计仪器仪表的故障有75%是由于瞬变和浪涌造成的。电压的瞬变和浪涌无处不在,电网、雷击、爆破,就连人在地毯上行走都会产生上万伏的静电感应电压,这些,都是仪器仪表的隐形致命杀手。因此,为了提高仪器仪表的可靠性和人体自身的安全性,必须对电压瞬变和浪涌采取防护措施。
1.防雷端口
根据仪器仪表应用的工程实践,仪器仪表受雷击可大致分为直击雷、感应雷和传导雷。但不论以哪一种形式到达设备都可归纳为从以下4个部位侵入的雷电浪涌,在此把这些部位称为防雷端口,并以仪器仪表举例说明。
1.1外壳端口
比如说,我们可以把任何一个大的或小的仪器仪表或系统视为一个整体的外壳,如传感器、传输线、信号中继、现场仪表、DCS系统等,它们都有可能完全暴露在环境中受到直接雷击,造成设备损坏。标准规定,当设备外壳受到4kv的雷电静电放电时,都会影响仪器仪表或系统的正常运行。例如放置于室外的传感器端子箱有可能受到雷电接触放电;位于机房内的DCS机柜有可能受到大楼立柱泄流时的空气放电。
1.2信号线端口(含天馈线、数据线、控制线等)
在控制系统中,为了实现信号或信息的传递总要有与外界连接的部位,如过程控制系统的信号交接端的总配线架、数据传输网的终端、微波设备到天线的馈线口等等,那么这些从外界接收信号或发射信号出去的接口都有可能受到雷电浪涌冲击。因为从楼外信号端口进来的浪涌往往通过长电缆,所以采用10/700μs波形,标准规定线到线间浪涌电压为0.5kV,线到地间浪涌电压为1 kV。而楼内仪器仪表之间传递信号的端口受到浪涌冲击相当于电源线上的浪涌冲击,采用1.2/50(8/20)μs组合波,线到线、线到地浪涌电压限值不变。一旦超过限值,信号端口和端口后的设备有可能遭受损坏。
1.3电源端口
电源端口是分布广泛也容易感应或传导雷电浪的部位,从配电箱到电源插座这些电源端口可以处在任何位置。标准规定在1.2/50(8/20)μs 波形下线与线之间浪涌电压限值为0.5kV,线到地浪涌电压限制为1kv。但这里的浪涌电压是指明工作电压为220V交流进入的,如果工作电压较低则不能以此为标准,电源线上受较小的浪涌冲击不一定立即损坏设备,但至少寿命有影响。
1.4接地端口
尽管在标准中没有专门提到接地端口的指标,实际上信息技术设备地端口是非常重要的。在雷电发生时接地端口有可能受到地电位反击、地电位升高影响,或者由于接地不良、接地不当使地阻过大达不到参考电位要求使设备损坏。接地端口不仅对接地电阻/接地线极(长度、直径、材料)、接地方式、地网的设置等有要求,而且还与设备的电特性、工作频段、工作环境等有直接的关系。同时从接地端还有可能反击到直流电源端口损坏直流工作电压的设备。,信息技术设备的防雷可以考虑从四个关键的端口入手,如图1。
2.仪器仪表的端口保护
2.1外壳端口
仪器仪表的外壳端口保护不仅仅是建筑物外壳,也应当包括某个设备的外壳或者某套系统的外壳,比如说机柜、计算机室等。按照IEC 1312—1《雷电电磁脉冲的防护》部分(一般原则)的适用范围为:建筑物内或建筑物顶部仪器仪表系统有效的雷电防护系统的设计、安装、检查、维护。其保护方法主要有三种:接地、屏蔽及等电位连接。
2.1.1接地;IEC1024—1已经阐述了建筑物防雷接地的方法,主要通过建筑物地下网状接地系统达到要求。仪器仪表系统防雷时还要求对相邻两建筑物之间通过的电力线,通信电缆均必须与建筑物接地系统连接起来(不能形成回路),以利用多条并行路径减少电缆中的电流。
仪器仪表系统的接地更应当注意系统的安全性和防止其它系统干扰。一般来说工作状态下仪器仪表系统接地不能直接和防雷地线相连,否则将有杂散电流进入仪器仪表系统引起信号干扰。正确的连接方式应当在地下将两个不同地网,通过放电器低压避雷器连接,使其在雷击状态下自动连通。
2.1.2屏蔽;从理论上考虑,屏蔽对仪器仪表外壳防雷是非常有效的。但从经济合理角度来看,还是应当从设备元器件抗扰度及对屏蔽效能的要求来选择不同的屏蔽方法。线路屏蔽,即在仪器仪表系统中采用屏蔽电缆已被广泛应用。但对于设备或系统的屏蔽需要视具体情况而定。IEC提出了采用建筑物钢筋连到金属框架的措施举例。
IEC1312—2作了如下描述:建筑物内部仪器仪表系统的主要电磁干扰源是由一次闪击是的几个雷击的瞬时电流造成的瞬态磁场。如果包含仪器仪表系统的建筑物或房间,用大空间屏蔽,通常在这样的措施下瞬时电场被减少到一个足够低的值。
2.1.3等电位接连;等电位连接的目的是减小仪器仪表之间和仪器仪表与金属部件之间的电位差。在防雷区的界面处的等电位连接要考虑建筑物内的仪器仪表系统,在那些对雷电电磁脉冲效应要求小的地方,等电位连接带好采用金属板,并多次与建筑物的钢筋连接或连接在其它屏蔽物的构件上。对于仪器仪表系统的外露导电物应建立等位连接网,原则上一个电位连接网不需要直接连在大地,但实际上所有等电位连接网都有通大地的连接。
2.2信号线端口
信号线端口保护现在已经在已有许多类型的较为成熟的保护器件,比如仪器仪表信号网络不同接口保护器、天馈线保护器、终端设备的保安单元等。在保护器选择时除了保护器本身的性能外,应该注意保护设备的传输速率、插入衰耗限值、驻波比、工作电压、工作电流等相关指标,如果在同一系统(或网络)使用多级保护还应该考虑相互配合问题。值得提出的是,当前由于商业因素,在同一网络中有过多使用保护器的倾向,其反而带来降低速率、增大衰耗、传输失真、信息丢失等问题。因此笔者认为对某一网络的信号端口保护应在网络信号进出的交界面处安装合适的保护器即可。
在信号端口窜入的瞬态电流容易损坏信号交换或转换单元及过程控制计算机,如主板、并行口、信号接口卡等。事实上瞬态电流或浪涌可能通过不同途径被引入到信号传输网络中,IEEE 802—3以太网标准中列出了四种可能对网络造成威胁的情况:
①局域网络元件和供电回路或受电影响的电路发生直接接触。
②局域网电缆和元件上的静电效果。
③高能量瞬态电流同局域网络系统耦合(由网络电缆附近的电缆引入)。
④彼此相连的网络元件的地线电压间有细小差别(例如两幢不同建筑的安全地线电压就有可能略有不同)。
以数据通信线为例,在RS—232的串、并行口的标准中,用于泄放高能浪涌和故障电流的地线同数据信号的返回路径共享一条线路,而小至几十伏的瞬态电压都有可能通过这些串、并行口而毁坏计算机及打印机等设备,信号传输线也能直接将户外电源线上的瞬态浪涌传导进来,而信号接口能够传导由闪电和静电泄漏引起的浪涌电压。
用户应当对数据线保护器慎重选择,有些保护器虽然起到了“分流”作用,但常常是将硅雪崩二极管(SAD)接在被保护线路和保护器外壳之间,测试表明SAD的钳位性能很好,但它电涌分流能力有限。同时压敏电阻(MOV)也不能在数据线保护器上使用。**的过程控制系统的信号接口防雷保护装置(无论是RS—232串等通信接口还是计算机同轴网络适配器接口)目前均采用瞬态过电压半导体放电管,其冲击残压参数指标很重要。有条件能够采取多级保护设计电路效果更佳。
天馈线保护器基本采用波导分流原理,其中发射功率400W,额定测试放电电流(8/20μs)5 kA,传输频率<2.5GHz,插入损耗<0.8dB,响应时间<100ns。
2.3电源端口
原则上采用多级SPD做电源保护,但信息系统的电源保护由于其敏感性必须采用较低的残压值的保护器件,且此残压应当低于需要保护设备的耐压能力。同时还必须考虑到电磁干扰对仪器仪表系统的影响,因此带过滤波的分流设计应当更加理想。所以对于仪器仪表系统电源保护特别注意的两点是:前两级采用通流容量大的保护器,在仪器仪表终端处则采用残压较低的保护器。后一级的保护器中好有滤波电路。对仪器仪表系统电源端口安装SPD时应注意以下问题:
①多级SPD应当考虑能量配合、时间配合、距离配合。如果配合不当的话,效果将适得其反。
②连接防雷保护器的引线应当尽量粗和短。
③全保护时尽可能将所有连接线捆扎在一起。