海东西门子专业授权代理商
伺服系统的设计包括:
伺服系统的动力方法设计-静态设计
型号和电机机械系统参数相互匹配。
控制理论方法设计-控制器参数和动态性能指标
一、惯量匹配:
(一).等效负载惯量jl的计算
1.驱动回转体的转动惯量:
回转运动的动能:
根据能量守恒:
推广到对多轴系统:
2.直线运动物体的等效转动惯量:
以丝杠螺母带动工作台为例:
直线运动工作台的动能:
将此能量转换成电机轴回转运动的能量,根据能量守恒,
推广到对一般系统:
3.回转和直线联动装置的等效转动惯量:
(二). 惯量匹配原则
1.的惯量匹配条件:
带惯性负载时的*大启动频率:
2.交、直流伺服电机的惯量匹配原则:
对于采用惯量较小的直流伺服电机的伺服系统
对于采用大惯量直流伺服电机的伺服系统
二、容量匹配:
(一). 等效转矩的计算
1.等效负载转矩[tl]的计算
根据能量守恒原理:
有些机械装置中有负载作用的轴不止一个,此时
2.等效摩擦转矩[tf]的计算
由于机械装置大部分损失的功率是克服摩擦力做功,所以等效摩擦力矩根据机械效率做近似 估算:
3.等效惯性力矩[ta]的计算
电机在变速时,需要一定的加速力矩。
(二). 伺服电机容量匹配原则
1.步进电机的容量匹配
2.交直流伺服电机的容量匹配:
直流伺服电机的转矩-速度特性曲线分成连续工作区、断续工作区、加减速工作区,三个区用途不同,电机转矩的选择方法也不一样。工程上常根据电机发热条件的等效原则,将重复短时工作制等效于连续工作制的电机来选择。
三、速度匹配
同样功率的电机,额定转速高则电机尺寸小,重量轻;电机转速越高,传动比就会越大,这对于减小伺服电机等效转动惯量,提高电机负载能力有利。因此电机常工作在高转速低扭矩状态。但是机械装置工作在低转速高扭矩状态,所以要在伺服电机和机械装置之间需要减速器匹配。应该在对负载分析的基础上,合理选择减速器的减速比。
四、伺服电机选择实例:
(一)步进电机选择实例
工作台(拖板)重量w=2000n,拖板导轨之间摩擦系数μ=0.06,车削是*大切削负载fz=2150n,y向切削分力fy=2fz=4300n(垂直于导轨),要求刀具切削使得进给速度v1=10-500mm/min,快速行程速度v2=3000mm/min,滚珠丝杠名义直径d0=32mm,导程tsp=6mm,丝杠总长l=1400mm,拖板*大行程为1150mm,定位精度±0.01mm,试选择合适的步进电机。
图4.18 步进电机带动工作台
1.脉冲当量的选择:
初选三相步进电机的步距角为0.75°/1.5°,当三相六拍运行时,步距角θ=0.75°,其每转脉冲数s=360°/θ=480。初选脉冲当量δ=0.01mm,根据脉冲当量的定义,可得中间齿轮传动比i为
选小齿轮齿数z1=20,z2=25。模数m=2
2.等效负载转矩的计算
(1)空载时的等效摩擦转矩tf
(2)车削加工时的等效负载转矩tl
3.等效转动惯量
(1)滚珠丝杠的转动惯量jsp
(2)拖板运动惯量换算到电机轴上的转动惯量jw
(3)大齿轮的转动惯量jg2
(4)小齿轮的转动惯量jg1
4.初选电机型号
已知tl=241.4(n.cm),jl=7.76(n.cm. s2),初选电机型号为110bf003,
其*大静转矩tmax=800,转子惯量jm=4.7 (n.cm. s2)由此可得
满足惯量匹配和容量匹配的条件
5.速度验算
(1)快进速度验算
查步进电机运行矩频曲线得当fmax=6000hz时,
电机转矩tm=90(ncm)>;tf=11.46,可按此频率计算*大进给速度v2
(2)工进速度的验算
,可选择此型号的电机
(二)直流伺服电机选择实例
线位移脉冲当量δ=0.01mm,*大进给速度v2=6000mm/min,加速时间0.2s,移动体重量w=2000n,移动速度6m/min,拖板导轨之间摩擦系数μ=0.065,电机直接驱动丝杠。丝杠外径55mm,试选择合适的直流伺服电机。
图4.19 直流伺服电机带动工作台
1.根据脉冲当量确定丝杠导程和齿轮传动比:
已知δ和编码器分辨率,可知步距角
换算到电机轴上
2.所需电机转速的计算
编码器轴上转速
3.等效负载转矩的计算
预紧力f2=f1/3=433.33(n)
4.等效转动惯量的计算
移动体
传动体
5.初选电机型号
已知tl=200.45(n.cm),jl=245(kg.cm2),初选电机型号为cn-800-10,
其*大静转矩tr=830 (n.cm), 转子惯量jm=91 (kg.cm2)由此可得
6.计算电机所需转矩tm
一、的开环控制
1、步进电机的硬件控制
1)脉冲分配器
当方向电平为低时,脉冲分配器的输出按a-b-c的顺序循环产生脉冲。
当方向电平为高时,脉冲分配器的输出按a-c-b的顺序循环产生脉冲。
2)、加、减速控制:
3).功率放大器
将脉冲分配器的输出信号进行电流放大后给的定子绕组供电,使电动机的转子产生输出转矩。
2.步进电机的微机控制:
目前,伺服系统的数字控制大都是采用硬件与软件相结合的控制方式,其中软件控制方式一般是利用微机实现的。这是因为基于微机实现的数字伺服控制器与模拟伺服控制器相比,具有下列优点:
(1)能明显地降低控制器硬件成本。速度更快、功能更新的新一代微处理机不断涌现,硬件费用会变得很便宜。体积小、重量轻、耗能少是它们的共同优点。
(2)可显著改善控制的可靠性。和大规模集成电路的平均无故障时(mtbf)大大长于分立元件电路。
(3)数字电路温度漂移小,也不存在参数的影响,稳定性好。
(4)硬件电路易标准化。在电路集成过程中采用了一些屏蔽措施,可以避免电子电路中过大的瞬态电流、电压引起的电磁干扰问题,因此可靠性比较高。
(5)采用微处理机的数字控制,使信息的双向传递能力大大增强,容易和上位系统机联运,可随时改变控制参数。
(6)可以设计适合于众多电力电子系统的统一硬件电路,其中软件可以模块化设计,拼装构成适用于各种应用对象的控制算法;以满足不同的用途。软件模块可以方便地增加、更改、删减,或者当实际系统变化时彻底更新。
(7)提高了信息存贮、监控、诊断以及分级控制的能力,使伺服系统更趋于智能化。
(8)随着微机芯片运算速度和存贮器容量的不断提高,性能优异但算法复杂的控制策略有了实现的基础。
二、步进电机的闭环控制