陇南西门子专业授权代理商
从传递函数的角度来看,位置控制器相当于一个比例环节,其比例系数是kp。
位置控制器输出是数字量,必须经过d/a转换之后才能控制调速单元,d/a转换也相当于一个比例环节,其比例系数是ka。
从位置环的角度来看,调速单元可以 等效为一惯性环节kv(tvs+1),式中,tv为惯性时间常数;kv为调速单元的放大倍数。调速单元输出的量是速度量,这一速度量经过积分环节1/s后成为角位移量。
位置量检测环节是指位置(光电编码器、旋转变压器等)和后置处理电路。这个环节也可以看作是一个比例环节,比例系数是kj。
相位比较的进给伺服系统
采用相位比较法实现位置闭环控制的伺服系统,是高性能中所使用的一种伺服系统。
相位伺服系统的核心问题是,如何把位置检测转换为相应的相位检测,并通过相位比较实现对驱动执行元件的速度控制。
幅值比较的进给伺服系统
幅值比较伺服系统是以位置检测信号的幅值大小来反映机械位移的数值,并以此作为位置反馈信号与指令信号进行比较构成的闭环控制系统。该系统的特点之一是,所用的位置检测元件应工作在幅值工作方式。感应同步器和旋转变压器都可以用于幅值伺服系统。幅值伺服系统实现闭环控制的过程与相位伺服系统有许多相似之处。
数据采样式进给伺服系统
步进的驱动电路实际上是一种脉冲放大电路,使脉冲具有一定的功率驱动能力。由于功率放大器的输出直接驱动电动机绕组,因此,功率放大电路的性能对步进电动机的运行性能影响很大。对驱动电路要求的核心问题则是如何提高步进电动机的快速性和平稳性。目前,国内经济型步进电动机驱动电路主要有以下几种:
1.单电压限流型驱动电路
图所示是步进电动机一相的驱动电路,l是电动机绕组,晶体管vt可以认为是一个无触点开关,它的理想工作状态应使电流流过绕组l的波形尽可能接近矩形波。但是由于电感线圈中的电流指数规律上升,其时间常数 ,须经过 的时间后才能达到稳态电流。由于步进电动机绕组本身的电阻很小,所以,时间常数很大,从而严重影响电动机的启动频率。为了减小时间常数,在励磁绕组中串以电阻r,这样时间常数 就大大减小,缩短了绕组中电流上升的过度过程,从而提高了工作速度。在电阻r两端并联c,是由于电容上的电压不能突变,在绕组由截止到导通的瞬间,电压全部降落在绕组上,使电流上升更快,所以,电容c又称为加速电容。
v在晶体管vt截止时起续流和保护作用,以防止晶体管截止瞬间绕组产生的反电势造成管子击穿,串联电阻rd使电流下降更快,从而使绕组电流波形后沿变陡。
这种电路的缺点是r上有功率消耗。为了提高快速性,需加大r的阻值,随着阻值的加大,电源电压也势必提高,功率消耗也进一步加大,正因为这样,单电压限流型驱动电路的使用受到了限制。
2.高低压切换型驱动电路
优点:功耗小,启动力矩大,突跳频率和工作频率高。
缺点:大功率管的数量要多用一倍,增加了驱动电源。
高低压切换型驱动电路的*后一级如图 (a)所示,相应的电压电流波形图如图(b)所示。这种电路中采用高压和低压两种电压供电,一般高压大于60v,低压为5~20v。v1在vt1和vt2都截止时通过电源和v2为电机绕组提供放电回路。在t1-t2时间内。vt1和vt2均饱和导通,+80v的高压电源经过vt1和vt2管加到步进电动机的绕组上,使其电流迅速上升,当时间到达t2时,或电流上升到某一数值时,ub2变为低电平,vt2截止,电动机绕组的电流由+12v电源经过vt1管来维持,此时,电流下降到电动机的额定电流,直到t3时ub1也为低电平,vt1管截止,电动机绕组电流下降到0。一般电压ub1由脉冲分配经过几级放大获得,电压ub2由单稳定时或定流装置再经脉冲变压器获得。
3.pwm 型驱动电路
恒频脉宽调制功放电路基本上是把斩波恒流和斩波平滑功放电路的特点集于一身,功能更好。
v1是20khz的方波,它作为各相d触发器的时钟信号cp,以保证各相以同样的频率进行斩波。
v2是步进控制信号。
vref是比较器op的正输入端信号,它用于确定电机绕组电流il 的稳定值。
恒频脉宽调制功率放大电路不但有较好高频特性,而且有效地减少了的噪声,同时还降低了功耗。因此体积也可以减少。但是由于斩波的频率较高,对功放管的要求也稍高。而这种电路的低频振荡也较高
步进的控制
步进电动机绕组是按一定通电方式工作的,为实现这种轮流通电,需将控制脉冲按规定的通电方式分配到电动机的每相绕组。这种分配既可以用硬件来实现,也可以用软件来实现。实现脉冲分配的硬件逻辑电路称为环行分配器。在计算机数字控制系统中,采用软件实现脉冲分配的方式相应称作软件环分。
硬件环形分配器:
硬件环形分配器需要根据步进电动机的相数和要求的通电方式设计,图为一个三相六拍的环形分配器。
分配器的主体是三个j-k触发器。三个j-k触发器的q输出端分别经各自的功放线路与步进电动机a、b、c三相绕组连接。当qa=1时,a相绕组通电;qb=1时,b相绕组通电;qc=1时,c相绕组通电。w+△x和w-△x是步进电动机的正反转控制信号。
正转时,各相通电顺序:
a-ab-b-bc-c-ca
反转时,各相通电顺序:
a-ac-c-cb-b-ba
软件环分:
对于不同的计算机和接口器件,软件环分有不同的形式,现以at89c51配置的系统为例加以说明。
1) 由p1口作为驱动电路的接口
控制脉冲经at89c51的并行i/o接口p1口输出到步进电动机各相的功率放大器输入,设p1口的p1.0输出至a相,p1.1输出至b相,p1.2输出至c相。
2)建立环形分配表
为了使电动机按照如前所述顺序通电,首先必须在存储器中建立一个环形分配表,存储器各单元中存放对应绕组通电的顺序数值,当运行时,依次将环形分配表中的数据,也就是对应存储器单元的内容送到p1口,使p1.0、p1.1、p1.2依次送出有关信号,从而使电动机轮流通电。 表为三相六拍环形分配表,k为存储器单元基地址(十六位二进制数),后面所加的数为地址的索引值。
可见,要是电动机正转,只需依次输出表中各单元的内容即可。当输出状态已是表底状态时,则修改索引值使下次输出重新为表首状态。如要使电动机反转,则只需反向依次输出各单元的内容。当输出状态达到表首状态时,则修改指针使下一次输出重新为表底状态。