15221406036
6ES7526-2BF00-0AB0现货供应
报价: 面议
最小起订: 1
有效期至: 长期有效
发布时间: 2023-06-28 01:21
发布IP: 116.224.103.5
浏览次数: 52
手机号: 15221406036
电话: 15221406036
在线咨询: 点击这里给我发消息
15221406036
详细信息

6ES7526-2BF00-0AB0现货供应

随着时代的发展,数字化家居控制系统的出现使得人们可以通过手机或者互联网在任何时候、任意地点对家中的任意电器进行远程控制,同时也可以对室内的空气温度、湿度、质量进行监测和调节。



    在常规的环境参数检测中,湿度是难准确测量的一个参数。这是因为测量湿度要比测量温度复杂得多,温度是个独立的被测量,而湿度却受其他因素(大气压强、温度)的影响。本文选用一种具有独特工艺设计、价格较低廉的、高精度、极好的线性输出的HSll01做为湿度传感器.较好的实现了对空气湿度的测量。并予以显示。


    1 HSl 101简介
    HSll01是法国Humirel公司推出的一款电容式相对湿度传感器。该传感器可广泛应用于办公室、家庭、汽车驾驶室、和工业过程控制系统等,对空气湿度进行检测。与其他产品相比,有着显著的优点: 
    ◆无需校准的完全互换性:


    ◆长期饱和状态,瞬间脱湿:


    ◆适应自动装配过程,包括波峰焊接、回流焊接等;


    ◆具有高可靠性和长期稳定性:


    ◆特有的固态聚合物结构:


    ◆适用于线性电压输出和线性频率输出两种电路;


    ◆响应时间快。


    1.1基本参数


    基本参数如表l所示。默认测量温度‘rct=25~C,测量时HSll01工作频率为10Khzo




    1.2特性曲线
    如图1。测量温度Tα=25。C,测量时HSll01工作频率为10Khzo


    从特性曲线曲线图上我们可以看出,HSll01具有极好的线性输出。可以近似看成相对湿度值与电容值成比例。因此在测量过程中,采集电容值即可。



     2测量电路       
    2.1湿度定义
    湿度指的是相对湿度。用%RH表示。即气体中(通常为空气中)所含水蒸气量(水蒸气压)与其空气在相同情况下饱和水蒸气量(饱和水蒸气压)的百分比。


    2.2测量原理
    HSll00湿度传感器是一种基于电容原理的湿度传感器,相对湿度的变化和电容值呈线性规律。在自动测试系统中,电容值随着空气湿度的变化而变化,因此将电容值的变化转换成电压或频率的变化,才能进行有效地数据采集。用555集成电路组成振荡电路,HSl 100湿度传感器充当振荡电容,从而完成湿度到频率的转换。


    2.3测量方法
    HSll01湿敏传感器是采用侧面开放式封装,只有两个引脚,有线性电压输出和线性频率输出两种电路。在使用时,将2脚接地,这里选用频率输出电路。该传感器采用电容构成材料,不允许直流方式供电。所以我们使用555定时器电路组成单稳态电路。具体电路分析如下。


    电源电压工作范围是UCC=+3.5~+12V。利用一片CMOS定时器TLC555.配上HSll01和电阻R2、R4构成单稳态电路,将相对湿度值变化转换成频率信号输出。输出频率范围是Hz,所对应的相对湿度为0~。当RH=55%时,f=6660Hz。输出的频率信号可送至数字频率计或控制系统,经整理后送显示。R3为输出端的限流电阻,起保护作用。通电后.电源沿着Uc→R4→R2→C对HSl 101充电。经过t1时间后湿敏电容的压降Uc就被充电到TI~C555的高触发电平(Uh=0.67Ucc),使内部比较器翻转,OUT的输出变成低电平。然后C开始放电,放电回路为C→R2→D→内部放电管地。经过t2时间后,Uc降到低触发电平(Ul=0.33Ucc),内部比较器再次翻转,使OUT端的输出变成高电平。这样周而复始的进行充、放电,形成了振荡。充电、放电时间计算公式分别为:tl=C(R2+R4)ln2;t2=CR21n2;输出波形的频率(f)和占空比(D)的计算公式如下:f=1/T=1/(t1+t2)=1/C(2R2+R4)ln2;D=tl/T=t1/t1+t2=R2+R4/(2R2+R4);通常取R4《R2,使D≈50%,输出接近于方波。例如,取人R2=567kQ,R4=49.9kΩ。


    湿度传感器只是保证传感探头的精度,在实际使用中,综合精度除了与湿度传感器本身元件有关,还与外围电路的器件选择相关。为了与HSll01温度系数相匹配,Rl数值应取为1%精度,且大温漂不超过100ppm(ppm:百万分之一,表示当温度变化1℃,所对应的电阻相对变化量)。为了保证达到6660Hz/55%,R2与555电路选取参照如下表:


    当RH=55%、TA=+25℃时,典型输出方波频率与相对湿度的数据对照见表3。





    2.4与微处理器IPC2132接口
    LPC2132是一种支持实时仿真和跟踪的16/32位基于ARM7TDMI-S内核的CPU,并带有64KB嵌入的高速FLASH存储器。LPC2132的实时仿真和跟踪功能方便了代码调试,降低了开发成本。并且I/O口能够接受5V容限。整个湿度传感器由于采用频率输出电路,接口简单,可直接与LPC2132普通I/0对接,这里选用PO.6脚做为频率测量接口。



    3软件设计       
    软件设计主要完成对HSl 101在单位时间内的频率测量。软件设计采用端口扫描方式,间隔8S开始测量,测量时间为1S。统计单位时间内脉冲的个数,与表3对照,确定湿度值的范围,并将湿度值通过LCD显示。为了保证测量精度,可以取3次以上测量数据,求平均值后,作为终送显示数据。微处理器工作晶体选用12.000MHz。程序代码采用嵌入式C语言编写,经在ADSl.2编译环境中进行编译后,移植到微处理器内执行。软件主要测量代码如下,并给出了详细注释。

  0前言

  近数十年来,自动化技术的应用范围越来越广泛,应用程度也更加深入。自动化技术的普遍应用,极大地把人类从繁杂的体力劳动和不安全的工作环境中解放出来,显著地改善了人类的工作环境和提高了人类的生活质量。不仅如此,自动化技术的应用,还明显地增强了企业的竞争能力,使企业在激烈的市场竞争中立于不败之地。

  随着计算机技术的快速发展和在各个领域的渗透,使基于计算机软硬件技术的自动化技术发展到了一个新的水平,并展示出了强劲的生命力和应用前景。特别是信息时代的到来、计算机网络技术的成熟和迅速普及,给自动化技术提出了新的要求和展示了新的应用前景。可以相信,基于计算机网络技术的自动控制技术将是和明天的应用主流。

  在总体技术上与其他的西方国家相比,中国的自动化技术领域是一个起步较晚、水平相对落后但发展较快的一个国家。自动化技术在我国的应用,已经产生了巨大的经济效益和社会效益。为了进一步增强国家的实力和与发达国家竞争,我们还必须进一步加强自动化技术的基础研究和深化应用程度。

  随着中国市场经济的深入发展和加入WTO的即将到来,中国的传统产业为了增强市场竞争能力,开始采用各种高新技术来改造企业。采用自动化和信息技术来改造传统企业将是企业技术改造的主要途径之一。通过这种技术改造,国内企业将增强自身在国内和国际市场的竞争能力。

  1污水处理厂的项目建设总体原则

  污水处理厂自动监控系统的总体建设总体原则:

  ·实用性。以解决现实问题为主,坚持为领导决策服务,又为经营管理服务,为生产建设服务。

  ·**性。采用成熟的技术,兼顾未来的发展趋势,及量力而行,又适当超前,留有发展余地。

  ·可扩展性。系统便于扩展,以保护前期投资的有效性和后续投资的连续性。

  ·经济性。以节约成本为基本出发点,建立一个运行可靠、满足公司实际需求的监控系统。

  ·易用性。系统操作简便、直观,以利于各个层次的人员使用。

  ·可靠性。确保系统可靠运行,在关键部分应有安全和容错措施。

  ·可管理性。系统从设计、器件、设备等的选型都必须考虑到系统的可管理性和可维护性。

  ·开放性。采用符合的产品,保证系统具有开放性特点。

  2基于Synall 2000的监控站解决方案

1 校园供水存在的问题

  高校校园的供水和一般城市供水相比较为特殊。主要是由于校园内学生住宿区一般都较为集中,造成了学生宿舍、食堂的用水十分集中,且用水量较大。而其它建筑物如教室、实验室、教师住宿区等的用水量则相对较少。同时,用水的时间性强,一般在早上6∶00~8∶00,中午11∶00~2∶00,下午5∶00~7∶00,晚上9∶00~10∶00四个时间段用水量大,而其它时间则用水量一般。某高校的某区供水方式为:把城市自来水管网的水源取到蓄水池后,用水泵抽到校园内高位水池,再由高位水池向校园管网供水。随着高校的扩招,学生人数显著增多,造成了经常性的供水不足,特别是学生宿舍和食堂为明显,影响了学生和教师的正常生活秩序,同时该供水方式还存在如下问题:

  (1)供水成本高。由于校园内的用水全部采用水泵供水,造成电能的极大浪费和机电设备的大量损耗。

  (2)供水可靠性低。由于水泵采用人工操作方式,高位水池的水位只能靠人为估计,而且高位水池离水泵房较远,无法做到准时开机和停机。会造成供水中断或出现高位水池水位过高而溢流,电能和水资源造成浪费。另外,如果蓄水池水位过低,还会造成水泵空转,导致电能浪费和机电设备的加速损耗。

  (3)水资源浪费。除水泵不能准时停机而造成的溢流浪费外。学生因高峰期供水中断,故经常打开阀门未关,造成来水后的浪费。很多学生在上课前或睡觉前打开阀门,用水桶或脸盆接水、贮水,造成来水后大量溢流,极大地浪费了水资源,增大了供水成本。

  (4)校园管网系统设计有缺陷。对于一般建筑物,如教室、实验室、教师住宿区等,本来城市自来水的正常供水即可满足其用水量要求,但采用水泵供水后反而会出现供水不足的现象。同时,用水量大的学生宿舍屋顶水池设计偏小,调节能力较差。

2 改造思路

  (1)校园供水以自来水供水为主,水泵供水为辅。由于自来水采用多厂联合供水的方式,并设有大量的多级调节水池和加压泵站,对水压和水量的调节能力较强。且自来水对供电事故的应急能力较强,机电设备的备用率较高,特别是经过近几年的管网改造,供水可靠性大大提高。因此,校园供水应充分利用自来水管网所提供的水压,满足校园供水中的大部分需要。针对用水量较大、用水集中、时间性强的学生宿舍和食堂,在用水高峰期会出现供水不足的情况。应在自来水正常供水的情况下,采用水泵供水作为辅助措施,发挥校园内蓄水池、高位水池和屋顶水池的贮水作用。这种供水方式既节约了大量电能,降低机电设备的损耗,获得良好经济效益,又提高了供水的可靠性,满足校园的特殊供水需要。

  (2)水泵供水采用自动控制方式。采用自动控制方式虽然会增加一些投资费用,但这部分费用与供水中的土建投资和机电设备投资相比是很小的。加上现在的自动控制装置技术成熟,可靠性高,既减少了人为因素的影响,提高了水泵供水的可靠性和准确性,又可减轻工作人员的工作量,降低能耗和机电设备的损耗,获得良好的经济效益,特别是长期运行,效益更加显著。对于自动控制装置的投资,也将因节水节能而很快回收。

3 具体改造方案

3.1 对校园供水管网进行适当改造

  该校园的高位水池地理位置较高,通过对该校园附近的自来水管网压力进行多次实测,发现在自来水管网压力高时,也不会造成高位水池溢流。因此,在改造时设置一条管路直接把城市供水管网和校园供水管网连接起来,并在管路上安装质量较好的倒流防止器,只允许水流从城市管网流向校园管网,利用自来水自身的压力向校园管网供水,满足校园供水的大部分需要。而且当自来水管网压力较高时(如深夜),还可实现各屋顶水池的贮水功能。对于高位水池,也能完成部分贮水任务,从而减少水泵的供水量,节约能耗,降低供水成本。如果在自来水管网压力高时,会造成高位水池溢流,则在上述管路改造的基础上,还需在高位水池的出水干管上增加一个止回阀,只允许水从高位水池流出。并从城市管网上另引一路水管到高位水池,且用浮球阀控制其进水,以防止高位水池溢流。

3.2 水泵改为自动控制方式

  在原有的水泵手动控制系统中,设有2台水泵,1用1备,但水泵出水干管的口径是按一台水泵运行设计的。故在改造时不考虑两台水泵同时运行的情况,否则需对水泵出水干管进行增径改造。又由于水泵功率较大,故原系统配有自耦减压启动器,以减小启停时的冲击。

  根据原系统的实际情况,为实现水泵的自动控制,设置一套自动控制装置,设置3个液位开关,其中2个安装于高位水池,1个安装于蓄水池。同时,为了加强水泵的故障判断,以便及时修理,在水泵出水干管上设置一只电接点压力表,根据水泵运行时其压力是否达到预定值来判断水泵是否出现故障。当然,更可靠的判断方法是设置示流信号器,即根据水泵出水管路上的示流信号器是否动作来进行判断,但示流信号器只能用于较小口径的管路上,且安装比较麻烦,而采用电接点压力表的判断方法既方便又可靠。另外,设置报警功能,并将报警信号远送值班室,以便值班人员对报警情况及时掌握。这样,根据水池水位、电接点压力表的情况来实现水泵的自动控制。正常情况下,利用工作泵进行供水,当工作泵出现故障时,则利用备用泵进行供水,并由自动装置对工作泵和备用泵进行自动切换,使设备得到均衡利用,这对延长设备使用寿命是很有好处的。其供水原理示意见图1,图1中的虚线部分为增加内容。

 我国是世界上大气污染严重的国家之一,由于我国是以煤为主要能源的国家,大气污染以烟尘和二氧化硫为主的烟煤型污染,其中火电厂环境问题尤为严重。电除尘器将越来越受到重视。解决这一问题,就有必要对电除尘器振打控制部分进行研究分析,结合生产实际进行升级改造,从而提高电除尘器的可靠性。我国由于起步晚,技术基础底子薄,要满足国家的环保指标,其治理量大面广时间短,目前国内有少数企业在研究电除尘器集散控制系统并开始应用例如福建龙净环保股份有限公司等,大多数集成国外产品和自主开发少部分产品。国际上例如瑞典Flakt公司、德国Lurgi公司、美国GE公司、EE公司等均在研究电除尘技术。通过总结长期实验研究成果和消化吸收国剑。**技术和经验开发研制出一批结构新颖的电除尘器。
  
  1.电除尘器振打控制系统结构分析
  
   振打控制系统分为监控层,控制层,设备层三层。监控层由1台上位机组成,通过上位机可以在中央控制室监视现场设备的运行状况,并可以直接在上位机上启动现场设备;控制层由可编程控制器、空气开关、继电器、接触器、热继电器和电缆等组成,它接受并执行监控层的指令,是控制系统的重要组成部分;设备层是分布在现场的阀门、电机和检测仪表等。
   改系统的监控层和控制层的任何一个出故障都会造成整个电厂的生产停机,给企业造成很大的损失。目前该电厂的电除尘器的振打控制系统控制层采用施耐德的PLC(非双机热备)作为主控制器,一台工控机作为监控层。在这种情况下如果监控层或控制层出现故障整个电厂的设备都的停机,给电厂造成不可沽量的损失。
  
  2.系统控制系统的改进
  
   针对上述对某电厂一的电除尘器的振打控制系统的分析,针对性的提出了解决方案。
   (1)考虑到在电厂整个设备运行过程中电除尘器可以短时间停运和整个发电系统不停机的前提下:
   a.种输入输出备用模块和一备用CPU,当系统控制系统故障时,可以在短时间内换掉故障的器件;
   b.对监控层提出了热备用的方案,即采用再提供一台工控机,使它与原有的工控机并列运行,大幅度的提高了系统的可靠性。
   (2)基于现场工人对系统多年运行的经验,发现现有系统的运行方式比较简单并且工人的劳动强度大,自动化水平低。现有的控制系统只有自动和手动的控制方式且自动的控制方式较为简单,还需要人工手动操作。针对这种情况,由现场工人提出的控制方式,我们又重新编写了控制程序,提高了振动控制系统的自动化水平,达到了可无人值守。
   a.自动:八个料仓按照一定的时序自动启停阀门和风机,将灰排出。操作人员不需要任何操作,故障时系统自动停机。
   b.半自动:操作人员可以任意选取运行的需要运行的阀门并可设定运行的周期(八个料仓全部卸灰一次为一个周期),启劝后,系统按一定时序启停选取的阀门,达到运行周期时系统自动停止。
   c.手动:操作人员可以任意启停任一台阀门。这种方式用于系统调试。
   在正常情况下系统的运行处于自动控制状态下;当系统出现故障时,可切换止半自动的控制状态下运行,此时维修人员可以将故障的设备进行更换。 [ 3.软件设计
  
   编程软件使用MODICON编程软件concept2.5。考虑到系统运行的稳定性,所有的功能和模拟量计算、累积、比较及逻辑判断均在PLC内完成,在正常工作条件下,可独立对整个系统进行全自动控制,不需要上位机的参与。
   软件由主程序和4个子程序(自动、半自动、手动、模拟量转换)组成。分别为自动、半自动、手动分配标志位,在主程序中循环检测三个标志位,检测到那个标志位置1则调用相应的子程序。这样程序运行周期短。自动子程序按运行周期设置一个计时器,随着计时器的递增达根据时序依次启停阀门,达到排灰的目的。

1.1 传感器
  
  主轴传感器采用光电编码器,它的转子和织机主轴同轴固定,主轴回转时带动转子同速回转。传感器每隔α=0.5度产生一个脉冲,织机主轴每转一周,就会产生720个脉冲。图2中ti为第i个脉冲的周期。零位触发(前止心)采用霍尔传感器,织机每转在固定转角位置产生一个定位脉冲,本系统采用它标志测试过程的起点,其波形如图3所示。张力传感器采用全桥应变式,其输出电压的高低正比于纱线张力大小,经标定后,测出电压即可换算出纱线张力。

  数据采集卡实现将传感器输出的电压信号转变为数字量,此数字量送给计算机,编程实现数据读取与保存。本系统采用美国NI(NationalInstrument)公司基于计算机PCI插槽的多路模拟输入采集卡,12位A/D转换,高采样频率可达200kHz。目前,喷气织机的一般转速为500-1500r/min,纬纱张力变化频率为8.3-25kHz。本次使用中采样率选择100kHz,数据采集卡本身集成放大电路和A/D转换,具有可编程选择放大倍数,用户无需自制放大电路,故测量系统建立快、测量精度高,测量时将转速传感器、定位传感器、张力传感器的输出分别接至采集卡的三路模拟输入通道。

1.3计算机硬件与软件
  
  任何具有PCI插槽的普通电脑,bbbbbbS98及以上操作系统均能满足要求。对数据采集卡编程及界面设计采用美国NI公司开发的工具软件Labbbbbbbs-CVI,CVI具有功能强大、界面友好、对多种采集卡支持等特点。

2 基于虚拟仪器的测试方法
  
  虚拟仪器是仪器技术与计算机技术结合的产物[4],在以计算机为核心的硬件平台上,通过配置I/O接口设备(DAQ,数据采集卡)将采集到的信号送往计算机,通过用户自己应用LabView语言或者CVI语言编写的不同测试功能的程序,对采集到的信号分析处理并显示[5]。一台插有采集卡的计算机加上用户自己开发的程序,就能实现用户自定义的功能[4],它具有体积小、操作方便、功能自定义、界面友好等特点,利用虚拟仪器可快速建立一个测试系统,借助于计算机编程实现用户所需要的处理功能。

  如图1所示,本系统测量时将转速传感器、定位传感器、张力传感器的输出分别接至采集卡的三路模拟输入通道,用CVI软件编程采集数据,将张力随转角变化的波形显示在计算机屏幕上。


3 具体测试原理
  
  本测量共用三个模入通道,首先启动所设计好的仪器,开启织机,零位触发传感器作为织机零度标志,采集到零位信号后,利用主轴光栅脉冲触发,对张力传感器的输出进行采样,按预定的采样点数采集结束后,经标定可得到动态情况下纬纱张力随织机转角变化,用CVI编写的程序流程图如图4所示,所设计的界面及测试结果如图5所示。


4 应用
  
  本系统已成功地用于青岛星火纺机有限公司多台喷气织机性能的测试。测试时,将三个传感器的输出接入对应模拟输入通道,启动织机,在图5所示的界面上打开仪器开关,设定测试参数,单击"采集"按钮即可实现测试。图5所示为YC426型喷气织机一次测试的结果。测试条件为:温度为26℃,湿度为75%,织机车速为542r/min,在任何时候可重新调出来查看,分析织机的性能,测试中张力出现的负值是由于动态测试中,传感器梁材料本身回弹效应引起,可通过选用精度高、性能好的传感器进一步提高检测精度,与前述其它测试方法相比,在选用相同精度的传感器下,由于所需硬件大大减少,避免了过多线路引人的误差。



相关产品
相关6es7526产品
新闻中心
产品分类
最新发布
企业新闻
站内搜索
 
联系方式
  • 地址:上海市松江区广富林路4855弄88号3楼
  • 电话:15221406036
  • 手机:15221406036
  • 联系人:聂航
  • 请卖家联系我