15221406036
西门子模块6ES7510-1DJ01-0AB0技术参数
报价: 666.00元/件
最小起订: 1
有效期至: 长期有效
发布时间: 2023-06-05 01:33
发布IP: 116.224.103.5
浏览次数: 35
手机号: 15221406036
电话: 15221406036
在线咨询: 点击这里给我发消息
15221406036
详细信息

西门子模块6ES7510-1DJ01-0AB0技术参数

台达 PLC 变频器  三联拉丝机

1       引言

    金属丝材是基本常用的金属深加工制品。生产金属丝材的金属拉拔机械简称拉丝机。随着国家对不可再生资源的日益关注,提倡节约,在整个电线电缆行业,越来越多的厂家开始尝试开发新型的生产设备,如铜包铝设备,由此延伸出来的三联拉等高端设备的潜在市场显得非常巨大,张家港维达机械正是看到了这样的商机,因此投入人力、物力开始研发新型的三联拉设备。在竞争激烈的拉丝机市场,单片机开发的专用控制器以及拉丝机专用变频器系统虽然结构简单造价低廉,但是对于工艺条件要求严格的高端拉丝机,由触摸屏、PLC与变频器系统集成的方案具有更加的自动控制技术优势。

2       拉丝机工艺描述

    拉丝机种类繁多,按照拉丝的线径大小可以分为:微拉机(线径单位:丝)、小拉机(线径单位:0.Xmm)、中拉机(线径单位:mm)、大拉机(线径单位:1X mm)从拉丝机内部控制方式和机械结构来说,又可以分为水箱式、滑轮式、直进式等主要的几种。对于不同要求,不同精度规则的产品,不同的金属物料,可选择不同规格的拉丝机械。而于钢丝生产企业和高端丝材,针对材料特性,其精度要求和拉拔稳定度高,因此使用直进式拉丝机较多。尽管拉丝工艺不同,但其工作过程基本上可以划分成放线、拉丝、收线等3部份工艺过程。

    金属丝的放线,对于整个拉丝机环节来说,其控制没有过高的精度要求,大部分拉丝机械,放线的操作是通过变频器驱动放线架实现的,但也有部分双变频控制的拉丝机械,甚至直接通过拉丝环节的丝线张力牵伸送进拉丝机,实现自由放线。拉丝环节是拉丝机为重要的工作环节。不同金属物料,不同的丝质品种和要求,拉丝环节有很大的不同,本文将详细分析设计直进式拉丝机自动控制系统。收线环节的工作速度决定了整个拉丝机械的生产效率,也是整个系统难控制的部分。在收线部分,常用的控制技术有同步控制与张力控制实现金属制品的收卷。

3       系统设计

3.1 直进式三联拉丝机系统方案设计

    直进式三联拉丝机自动化系统框图参见图1。


图1直进式三联拉丝机自动化系统框图

 

    三联拉属于大型拉丝机,拉出丝的线径较粗(大线径14mm),因此需要电机在低频启动时要能提供足够大的输出转矩。这样对于变频器的低频特性有较高的要求。因此在做方案时选择了使用B系列的变频器,矢量控制能较普通变频器在低频控制时,让电机的输出转矩有明显的**。

    三联拉不同于传统的拉丝机,一般的拉丝机分为双变频和单变频控制两种。因此在控制上只要PID参数在调试的过程当中能够合理设置,让收线的速度通过积分的作用跟随拉丝的速度,将积分增益设置的大一些,而积分周期要长一些,这样控制效果会比较理想。而三联拉分为两级拉伸,从拉的速度跟随主拉的速度,同时收线的速度要快速跟随从拉的速度。当主拉速度变化时,从拉及收线的速度要跟随主拉的速度同升同降,并且由于主拉加减速打破了之前的平衡状态,要求从拉及收线的要快速响应,达到新的平衡状态。尤其是收线要更加要快速响应。由于控制对象相互之间在速度上相互影响,因此在应用普通拉丝机的控制方法,使用简单的PID调整就很难使得从拉和收线达到平衡。积分作用的滞后,同时平衡杆可调节的范围又比较小,如果不能快速响应,会出现摆杆回到平衡位置的时间较长,同时在回到平衡位置后,由于积分的累计使得前后速度已经有较大的差异,又造成超过平衡位置,此时后一级又需要经过一段时间的积分作用才能将速度校正过来,但由于积分作用的滞后使得还未将平衡杆校正过来,可能丝就已经被拉断了。因此需要一种新的控制算法,要能够快速响应主速的变化,同时不能够超调,造成系统的震荡。具体的控制算法在下文进行详细的介绍及说明。

3.2 控制系统结构与算法设计

    (1)系统控制结构。系统控制结构如图2所示。


图2 系统控制结构如

 

    (2)控制算法设计。根据实际控制对象的特性,要求快速响应,同时调节范围有限。因此考虑用比例的关系进行调整,因为大拉机械设计上与微拉、小拉、中拉有很大的不同。前者收线都存在卷径的变化,由卷径的变化而影响速度。而大拉的收线部分不同于前者,可以忽略卷径的变化。算法如下公式所示:

其中K1为主拉与从拉之间的同步比例系数,K2为从拉与收线之间的同步比例系数。

Kf1, Kf2分别为反馈比例系数,ΔE1,ΔE2为偏离平衡位置的偏差,偏差有正负之分。

由于原料丝经过不同孔径的模具后,被拉成细线径的丝。因此伸长率很大,如果对伸长部分不进行处理,在低速和高速的时候,从拉及收线是来不及响应的。如何确定K1与K2的大小,可以通过原料丝与被拉后丝的体积不变的原则来计算。因此在人机界面上由操作者在图3画面进行设定。


图3 同步比例系数设定画面

    (3)同步比例系数的确定方法。因为体积V=πr2L(r为丝的半径,L为丝的长度),因此从原料丝到经过模具后丝的线径发生了变化。假设进模具前的线径为r1,长度为L1;经过模具后丝的线径为r2,长度为L2,则根据体积不变的原则可以得出:

因此:r12L1= r22L2,即原料丝经过模具后被拉长了,伸长的系数K= L2/ L1= r12/ r22

经过这样的推导,就可以得出在前面控制算法中(1),(2)两式中同步比例系数K1、K2.

反馈比例系数Kf1、Kf2的确定是依据具体的调试效果来确定。

3.3 台达机电产品应用设计

    (1)硬件构成。硬件构成参见表1。

表1  硬件选型

    (2)PLC-变频器电气设计。在配置上选用比较有特色的DVP10SX00R的主机,该主机上自带2路模拟量输入和2路模拟量输出,解析度12位。另外选用DVP02DA-S的模块,一路作为两个平衡杆电位器的电源,另外一路作为收线变频器的速度给定。而主机上自带的2路DA,分别作为主拉变频、从拉变频的速度给定。另外2路AD则分别作为2路电位器的反馈输入,参见图4。这样不仅仅能够为客户节省大幅的成本,同时安装尺寸也非常小,节省了安装空间。


图4 PLC电控设计


4 系统调试
    在整个调试过程中,不仅要合理的调整反馈比例系数。同时也要注意主拉、从拉在正常运行过程中出力的不同。可以想象由于原料丝的线径粗,即道拉伸主拉电机要出更多的力,即主拉在低速启动时需要较高的转距,如果仅仅单纯的去调试PLC程序,改变反馈比例系数,在拉不同线径的丝时,控制的效果一定是会发生变化的。我们不可能要求操作人员去动态的调整反馈比例系数。其实只要将主拉的V/F曲线调整的合理,**低速转距或者根据实际情况还可以将主拉变频的控制方式改成矢量控制,来弥补低速运行时出力不足的情况。
    如果主拉的控制方式采用矢量控制,在负载较重的时候,会发现平衡杆频繁震荡。
    如果观察运行电流,会发现电机运行电流忽大忽小,之所以会出现这种情况的原因是由于采用矢量控制时,变频的输出电流会进行补偿,以**电机的输出转矩。而电流改变的太频繁,会造成上述的现象,如何解决?可以增大转矩补偿低通滤波时间,增大该值可以非常有效的克服振动的现象。这一点是非常关键的。
    整个系统在运行中可以分启动、加速、减速、停车过程。启动要求主拉具有较高的启动转矩,在拉大线径时也要能有足够的力量。在加速的过程中需要从拉的加速时间要小于主拉的加速时间,目的是为了快速跟随主拉速度的变化,同时也能及时的对平衡杆的变化响应出来。收线在加速的过程中,加速时间要比从拉更小,因为收线要更加快速的对主拉或从拉速度的变化进行快速响应。在减速和停车的过程中,也要合理的对主拉、从拉、收线的减速时间进行设定。以保证在停车时平衡杆能够停在平衡位置附近。

1 引言
    为了补偿油田采油生产过程中地层压力衰减,需要使用注水工艺维持地层压力进行采油作业。注水压力高低是决定油田合理开发和地面管线及设备状态的重要参数。由于在注水工艺和机电设备配置设计中需要适应的工艺条件复杂多样,因此注水工艺设计和机电设备配置工程裕量。这些工艺条件包括:后期开发注水井的增多;储油地层压力及油气水分布不断发生变化;开关井数的增减;洗井及供水不足的影响等等。工艺条件的不确定性引起注水压力波动,注水量不均匀不稳定,注水压力控制难度大,给油田生产稳产高产和管理带来困难。由于油田注水要求难于准确预测和控制,考虑到油田开发中的需要,设备裕量通常按照油田大可能需求设计,在注水系统设计中尤为突出。油田注水设备采用离心泵电机拖动,大功率系统经常运行在大马拉小车的轻载低效状态。注水压力靠泵出口闸门手动控制,即靠改变管网特性曲线来调节泵的排量,泵、电动机匹配难以达到在泵的佳工况点运行,管网效率低,电能损失高达50%以上。
    变频恒压技术能够十分有效的稳定注水工艺过程和大幅度降低大裕量型风机泵类工程电耗。注水站恒压变频自控系统的技术路线是充分利用现有生产设施,对注水设备的电动机转速进行调节,达到稳压、稳流供注水。同时软起软停功能代替减压启动,使电动机起停平稳,减少对电网和机械设 备的冲击,不会造成管网压力、**、流速剧烈变化,无需阀门截流,因此对防止汽蚀、水击、喘振极为有利,可延长管网、泵、阀门维修周期和使用寿命。配套完善自动控制系统,搭建需求信息平台,**污水处理效果,加强监督管理机制,大限度地降低岗位员工劳动强度,**企业信息化管理水平,具有非常大的经济效益和社会效益。
2 系统组成及功能设计

     控制系统结构如图1所示。系统分为2个级别,即现场级和控制级,通过人机界面(HMI)实现工艺流程显示与控制。
    系统核心自动化设备选用台达机电产品。控制级是实现系统功能的关键,其主要功能是HMI(人机交互界面)与现场级之间的枢纽层。接受HMI设置的参数或命令,对注水生产过程进行控制,同时将现场状态输送到HMI。控制部分由台达PLC与触摸屏集成。包括DVP-32EH00R(CPU单元)、DVP-04AD-H(模拟量输入模块)、模拟DVP-04DA-H(量输出模块)、DOP-A80THTD(触摸屏)组成。控制级设备安装在控制室内电控柜。台达PLC的CPU模块 DVP-32EH00R其带有一个RS232和一个RS485通讯接口,DOP-A80THTD触摸屏带有1个RS232接口和1个USB接口。触摸屏通过RS232串口与控制器通讯。
   现场级是实现系统功能的基础。现场级由智能一体化压力变送器和变频器组成。智能一体化压力变送器选用霍尼韦尔压力变送器,变频器选用台达VFD系列变频器。现场注水电机1台160kW、2台75kW(备用1台),因此变频器选用160KW VFD-1600F43A一台与75KW VFD-750F43A分别组成一拖一和一拖二方案,参见图2。利用1台PLC控制2台变频器拖动2台注水电机变频横压注水。现场级控制采用屏蔽电缆连接,智能一体化压力变送器将压力信号转换为4-20mA信号输入到模拟量输入模块DVP-04AD-H,控制器PLC输出的控制量通过模拟量输出模块DVP-04AD-H转换为4-20mA信号输入2台变频器,实现2台注水电机的恒压注水变频控制。

3 工艺流程及控制系统设计 
    横压注水工艺自动化系统原理如图2所示。系统采用三种控制方式:自动运行,手动变频运行和工频运行。  

   
                      图2自控系统原理图 
3.1 自动运行 
    系统自动启动台变频器,利用PID来控制注水泵的注水压力,如果一台泵输出压力不能满足压力要求,系统会自动启动第二台变频器以满足压力要求。 
3.2 手动变频运行  
    通过控制面板上的按钮在手动模式下可以单独启动变频器,此方式可以灵活控制变频输出。满足复杂情况下的控制要求。 
3.3 工频运行 
    变频器启动电机运行到工频频率后,利用接触器切换电机脱离开变频器,投入工频运行,参见图2。变频器充当大功率电机的软启动器。 
    通过以上三种控制方式,可以保证注水电机的正常运行,达到满足不间断生产的要求。 
3.4人机界面设计 
    工艺流程图如图3所示,控制参数如图4所示,控制器参数设置如图5所示。  
  

                            图3工艺流程图  
   
                          图4 控制参数  
   
                          图5 控制器参数设置 
4 结束语 
    采用中达公司的PLC、触摸屏和变频器来控制注水系统,单一自动化平台控制结构简单;节能效益显着;方便人员操作。项目受到油田企业关注得到好评。项目体现了中达产品节能自动化的理念,特别是中达机电产品在成套系统控制工程中的优势


相关产品
相关西门子模块产品
产品分类
最新发布
企业新闻
站内搜索
 
联系方式
  • 地址:上海市松江区广富林路4855弄88号3楼
  • 电话:15221406036
  • 手机:15221406036
  • 联系人:聂航