15221406036
西门子模块6ES7517-3FP00-0AB0
报价: 666.00元/件
最小起订: 1
有效期至: 长期有效
发布时间: 2023-05-26 01:32
发布IP: 116.224.103.5
浏览次数: 43
手机号: 15221406036
电话: 15221406036
在线咨询: 点击这里给我发消息
15221406036
详细信息

西门子模块6ES7517-3FP00-0AB0

一、引言


    温度传感器应用广泛[1],其中Pt电阻温度传感器由于精度高、稳定性好、可靠性强、寿命长,所以广泛应用于气象、农林、化纤、食品、汽车、家用电器、工业自动化测量和各种实验仪器仪表等领域。然而随着产量增加,其生产过程中产品的测试问题成为影响产品产量和质量的关键问题,研制开发高性能价格比的测试系统,不仅可为生产商提供必要的测试工具,还可为温度传感器的可靠性研究提供有效的手段。本文介绍了Pt电阻温度传感器测试系统的多通道信号调理模块的原理及电路设计。


    二、信号调理模块的构成及工作原理

    Pt膜温度传感器测试系统信号调理模块的基本原理如图1所示,整套测试系统一共有n个单元测量电路,能实现传感器的多通道测量。每个单元测量电路采用四线制的方式进行设计,而这种四线制的结构中需要一个精密的恒流源;此外,由于单元测量电路的输出信号较弱,还需要将输出信号进行直流放大,放大后再进行A/D转换。为了提高测量精度,减小测量时外围电路带来的误差,本设计采用了多路电子开关Ka,使得n路单元测量电路共用一个0.5mA的精密恒流源,同时使 n路单元测量电路共用一个放大电路,即在对Pt温度传感器进行测量时,只有当电子开关组Ka和Kb组的第n个开关同时接通时才能够选中第n个Pt温度传感器并对其进行参数的测量。

    本系统采用了32个八选一的多路开关器件CD4051和两个74LS138组成电子开关阵列,实现了对128个通道控制,可选择128个Pt电阻中任意一个进行测试。测量电路所测得的Pt电阻传感器两端的电压经过放大电路后进入MSP430单片机的进行A/D转换。

    三、恒流源的设计

    恒流源原理如图2所示[3、4]。本测试系统恒流源的电流值定为0.5mA,此电流值定为0.5mA主要有以下两个原因: 

    (1)、如果恒流源的电流值过大,电流在流过Pt电阻时产生的热量会影响测试精度。根据经验,电流值不能大于1mA;

    (2)、如果恒流源的电流值过小,在测试时输出的信号就会很小,为了使测量的信号满足A/D的要求就必须加大放大电路的放大倍数,这样就加大了系统的误差。综合考虑上述两个原因,本系统中恒流源的电流值定为0.5mA。恒流源电路设计中使用了TLC2652高精度斩波稳零运算放大器[2]和电压基准源TL431。 TLC2652斩波稳零的工作方式使其具有优异的直流特性,失调电压及其漂移、共模电压、低频噪声等特点。TL431是一个有良好的热稳定性能的三端可调的电压基准源,它的输出电压可以在2.5V到36V范围内设置。 

    在设计恒流源时,电压基准源TL431使得A、B两端的电压为2.5 V,B点与TLC2652的3脚的电位相等,而TLC2652的3脚与其2脚虚短,即3脚与2脚的电位相等,也就相当于B点与TLC2652的2脚电位相等,即R1两端的电压与A、B两端的电压相等,也为2.5V,从而可以计算出流过R1的电流I1为0.5mA。TLC2652的2脚与其3脚虚断,也就是说TLC2652的2脚没有电流输出,所以有I2=I1。换言之就是我们在C处得到0.5mA的恒流输出[4、5]。
             
    
    
    四、放大电路的设计

    由于所测出的Pt电阻温度传感器两端的电压信号较弱,所以此电压在进行A/D转换之前必须经过放大电路(如图3所示)的放大。

    本系统中放大电路的输入信号在50mV~70mV之间,所用A/D转换的电压范围为0V~2.5V,经过计算,放大电路的放大倍数为35倍左右时可以满足A/D转换的要求。普通的运算放大器的输入失调电压一般在数百微伏以上,失调电压的温度系数在零点几微伏以上。虽然输入失调电压可以被调零,但其漂移则是难以消除的。而斩波稳零型运算放大器TLC2652提供了一种解决号放大问题的廉价方案。斩波稳零的工作方式使TLC2652具有优异的直流特性,失调电压为0.5μV(典型值)~1μV(大值);输入失调漂移电压为0.003μV/℃(典型值),失调电压长期漂移为0.003μV/月[3][8]。经过计算,TLC2652的性能参数可以满足本系统测量精度的要求,所以本系统的放大电路中的运放采用了TLC2652。

    五、信号调理模块的精度分析

    对本测试系统在进行测试时,先将被测一组的Pt电阻温度传感器置于冰水混合物中,测出这组Pt电阻在0℃时两端电压值,再将这组Pt电阻温度传感器置于100℃的液体介质中,测出这组Pt电阻在100℃时两端电压值。被测的温度传感器Pt100在0℃的阻值为100W,在100℃时的阻值为138Ω。而本测试系统所用的A/D输入电压在0V~2.5V。本系统的恒流源的电流定为0.5mA。
    

    Pt电阻测温时满足公式:

    Rt=R0(1+At+Bt­2)                         (1)

    式中,A=3.90802×10-3/℃;
    
    B=-5.80195×10-7/℃;  

    Rt、R0—Pt电阻在t℃和0℃时的电阻值。

    由此可推出公式:

    ΔR= R0(AΔt+BΔt2)                          (2)

    要想使被测的Pt电阻的测量精度达到0.1℃ ,取Δt=0.1℃带入上式,可求得ΔR=0.0391W。即本系统所测的Pt电阻的阻值精度应为0.0391。故可算出系统的大相对误差γ总为3.91×10-4

    整个系统的误差包括:恒流源的误差γ1,引线电阻Rn1、Rn2、Rn3和Rn4产生的误差γ2,电子开关Ka、Kb导通电阻产生的误差γ3和放大电路的误差γ4。

    1、恒流源的误差γ1

    恒流源的误差γ1来源有TL431的误差γ11、TLC2652的误差γ12及图2中电阻R6的误差γ13。假设系统工作环境的温度变化ΔT=10℃, TL431的电压的温漂为20ppm/℃可以计算出:

    γ11= 20×10-6×10=2×10-4

    由TLC2652的输入偏置电流为60pA(大值)、输入失调电流为60pA(大值),可以计算出:

    γ12=(60×10-12+60×10-12)/(0.5×10-3)=2.4×10-7

    恒流源电路中的电阻R6为精密电阻,其温漂为2ppm/℃,可以计算出:

    γ13=2×10-6×10=2×10-5

    则:γ1=  ≈2×10-4

    2、引线电阻产生的误差γ2

    在本设计中,对Pt温度传感器进行测试时采用的四线制接线方式可消除因连线过长而引起的误差。如图1中所示的Ptn的等效形式,其中Rn1、Rn2、Rn3和Rn4为引线电阻和接触电阻,且阻值相同。Rn1、Rn2是电压检测回路的引线电阻,Rn3、Rn4是恒流源回路的引线电阻。这种电路在测量电压时,由Rn1和Rn2的电压降引起的测量误差,远远小于Pt电阻温度传感器两端的电压的值,可忽略不计。Rn3和Rn4因为是和恒流源串联连接,故也可忽略。因此γ2≈0。

    3、电子开关导通电阻产生的误差

    本系统的电子开关采用了八选一的CMOS模拟开关CD4051,其导通时的电阻约为几百欧,但我们可以把Ka导通电阻看作恒流源电路中的运放的差模输入阻抗的一部分。Kb的导通电阻可以看作放大电路中的运放的输入阻抗的一部份,所以γ3≈0 

    4、放大电路的误差

    根据TLC2652特性可知,其输入失调电压为0.5μV~1μV;失调电压漂移为0.003μV/ oC;假设系统工作环境的温度变化ΔT=10℃ ,可以计算出放大电路的误差γ4:

    γ4=1××10-6×20≈0.5×10-6

    所以信号调理模块的大测量误差γ为:

        γ=                 (3)

    由于γ<γ总,所以此信号调理模块的测量精度满足要求。

对正在改型的常导中低速磁悬浮列车的机械制动系统进行了介绍和分析,建立了机械制动系统的模型,介绍了计算机制动控制的工作原理、系统组成以及控制系统的硬件配置和软件流程等。在工控机的控制下,实现对磁悬浮列车机械制动系统的自动控制和实时监测。 


    1、前言

    磁悬浮列车是一种轮轨非粘着传动、悬浮于轨道的新型轨道交通运输系统,是介于铁路和航空之间的一种独特的运输方式。在2001年研制的辆常导中低速磁悬浮列车实验线中,除了采用电制动以外,还设置了机械制动和支撑滑块制动。实验表明,几种制动方式中,电制动和支撑滑块制动都达到很优的效果。

    为了达到更优的性能指标,对正在改型的第二辆常导中低速磁悬浮列车的机械制动进行了改进。但是,机械制动受外界环境的影响很大,为了有条件地改变制动力,有效地克服外界环境的影响,引入了减速度控制方案。本文利用工控机、数控、数据采集等技术,对常导中低速磁悬浮列车的机械制动系统进行了设计,实现了计算机控制的机械制动。整个制动系统由机械制动装置、工控机、高速数据采集卡、开关量输入板、开关量输出板等组成,实现对常导中低速磁悬浮列车机械制动的自动控制和监测。

    2、机械制动的制动原理

    目前我校自行研制的改进型常导中低速磁悬浮列车的机械制动采用了气一液制动方式,为了减小制动器的体积,制动的工作介质采用液压油。机械制动气路结构如图1所示。
    
    图1 磁悬浮列车机械制动结构图
    系统由比例阀、气液转换器、制动器组成。气压调节选用了电流型的比例气压调节阀,其入口气压由恒压阀调节在0.6MPa左右。车辆的气液转换器的大增量气压设置为0.4MPa,大油压可以工作在10MPa左右,因此我们选用转换比为1∶25的气—液转换器。当控制电流为4~20mA时,输出气压在0~0.4MPa变化,制动器的制动油压相应在0~10MPa之间变化,每台制动器的制动臂产生0~9000N的夹持力。如果摩擦片的磨擦系数在0.3左右时,单台制动器的制动力可以大于2500N。由于每辆车有16台制动器,共可产生大于40000N的制动力,在磁浮车处于额定载重条件下(总重30t时),仅机械制动即可产生大于1.3m/s2的减速度效果。

    为了保证车辆在比例气压调节阀失效或需要紧急制动的情况下,仍然能够完成制动目的,在比例气压调节阀侧还并联了一个开关型电磁阀,作为应急控制之用。

    因此,通过调节比例阀的电流就可以改变制动器的制动力,从而得到制动减速度。采用计算机实现对制动系统的闭环控制,驾驶员可以自如地依需要的减速度来控制车辆的制动运行。

    3、机械制动系统的建模

    要实现机械制动的控制,首先要对机械制动的各个部件进行建模。制动器总成的油压建立通过了管道,并有一定阻力,另外,制动器还有运动空行程,因此制动力的产生有一定的延迟时间,机械制动系统属于非线性系统。在比例阀以及气液转换器处分别安装气压传感器和液压传感器,通过改变比例阀的控制电流来改变制动系统的各个控制部件的输出,测得各部件的特性曲线。当比例阀的输入电流阶跃变化时,实验得出系统的阶跃响应曲线,然后分析图形特性,建立系统的参数模型,确定传递函数的结构和参数。

    图2为磁悬浮列车机械制动控制部件的特性曲线图。当比例阀的调节电流调节到6.30mA时,制动器夹住,当调节电流在6.30~16.54mA变化时,气压传感器和油压传感器的输出电流都呈线性变化,输出气压在0.08~0.5MPa变化,输出油压在1~10MPa变化。当比例阀的输出电流下调时,气压有一定的回环。
    
    图2 磁悬浮列车机械制动控制部件的特性曲线
    图3和图4分别为比例阀和气液转换器的阶跃响应曲线。
    
    通过辨识,可得到各部件的数学模型如下:
    比例阀的模型为:
    
    气液转换器的模型为:

    制动转换器的模型为:

    式中,K1,K2,K3,T1,T2,τ1,τ2等可以通过实验辨识分析求得。

    磁悬浮列车有16台制动器总成,安装夹持力传感器在实际中不好实现。但是,当实现了制动系统的气压调节作用时,实际上就间接地控制了制动油压和制动器的夹持力,该过程忽略了管线、制动器部件运动的摩擦阻力,因此设计气压校正网络来实现夹持力闭环控制,诚然,只使用夹持力闭环控制时,由于自然条件和轨面的条件不同,同样的夹持力,可能获得的制动效果不同,制动的效果与驾驶员的经验有关。采用减速度闭环控制时,驾驶员可以通过制动手柄,控制不同的减速度,驾驶员对制动手柄的控制是以减速度给定值不大于1.3m/s2为上限的,因此设计了气压和减速度为反馈量的双闭环控制系统。其反馈控制框图如图5所示。气压校正网络W2(s)用于控制气压,即间接地控制了夹持力,加速度校正网络W1(s)则用于控制减速度,使减速度不至于过大,并可以从0~1.3m/s2之间进行线性操作。
    
    图5 机械制动系统反馈控制框图

    4、计算机控制的机械制动系统组成

    计算机控制的机械制动系统主要由传感器(加速度、气压)、A/D转换卡、开关量输入卡、D/A转换卡、工控机(包括控制程序)等组成。如图6所示,被控对象是列车的减速度,当制动时,由加速度传感器测量制动减速度的值,经过A/D转换,送入工控机。工控机对测量的减速度信号进行数字滤波,并和制动手柄给定的减速度信号进行比较,通过减速度控制器W1(s)(由软件实现)计算出减速度控制信号,与气压传感器采集的气压反馈信号比较,获得误差信号,再通过气压控制器W2(s)(由软件实现)得到气压控制信号,经过D/A转换,驱动比例阀控制气压从而改变制动力的大小,终达到所希望的减速度。

    另外,机械制动器的安装位置比较紧凑,对刹车片的磨耗的观察和检查比较困难,采用了摩擦片内埋线的方式,在磨耗达到极限并处于夹持状态时,可以用埋线被短路的条件获得电信号。因此,可以对刹车片的状况进行在线检测。

    本系统中,工控机采用研华公司的IPC610H,而开关量输入卡、A/D转换卡、D/A转换卡分别采用康拓公司的系列板卡,系统框图见图6。
    
    图6 计算机机械制动系统框图

    5、机械制动系统的软件设计

    本系统采用基于bbbbbbs平台的可视化软件Visual C++6.0作为开发工具,本着模块化软件设计思想,把系统划分为几个模块,并设置各个模块之间的接口,根据要求,将磁悬浮机械制动系统分为:参数设置模块、输入数据采集和A/D转换模块、数字滤波模块、控制器算法模块、数据处理和显示模块、输出数据D/A转换模块、数据保存模块、与上位机的通信模块等。如图7所示。参数设置模块主要是一些输入输出板卡的设置等;数据采集和A/D转换模块主要是实现制动手柄给定的加速度值、输出的加速度值以及气压值的采集和数模转换等;为了有效地克服测量信号中的干扰和噪声,设置了数字滤波模块,通过软件滤波减少干扰;另外还设置了数据处理和显示模块,用来实时显示当前的加速度值和制动时间;输出数据D/A转换模块将控制信号进行模数转换;另外还设置了数据保存模块以及与上位机的通信模块。核心的控制器算法采用非线性PID控制算法,控制参数由计算机优化得出。主程序流程如图8所示。
    
    图7 计算机机械制动系统的软件设计框图
    
    图8 计算机机械制动系统的主流程图

    6、结束语

    本文对计算机控制的常导磁悬浮列车的机械制动系统在建模、硬件、软件上进行了阐述,计算机制动控制改善了以往手动机械制动的不足,是磁悬浮机械制动的新突破。目前正处于研发阶段,并将在我校自行研制的改进型磁悬浮列车上使用和考核性能,为今后常导磁悬浮列车的机械制动研究做了铺垫。


相关产品
相关西门子模块产品
产品分类
最新发布
企业新闻
站内搜索
 
联系方式
  • 地址:上海市松江区广富林路4855弄88号3楼
  • 电话:15221406036
  • 手机:15221406036
  • 联系人:聂航