6ES7136-6DB00-0CA0
现代PLC运算速度高速化的趋势
运算速度高速化也是日本PLC系统追求的一个重要目标。由于目前PLC的CPU模块竞相采用32位RISC芯片,运算速度大为提高。一般基本指令的执行速度均达到数十个纳秒(ns),如三菱电机的Q02HCPU其输入指令的执行时间为34ns,富士电机MICREX-SX系列SPH300达20ns,横河电机的FA-M3系列的F3SP59-7S其输入指令的执行时间为17.5ns。仅看一种指令的执行时间并不能完整地说明问题。日本电机工业会(日本电机工业的行业协会)JEMA一直倡导用PCmix值(即PLC的处理时间性能表示指标,用1微秒执行的基本指令和数据处理指令的平均次数来表示)来衡量PLC的运算速度。所谓1微秒执行的基本指令和数据处理指令的平均次数,是按PLC应用程序所使用的指令的频繁程度的统计平均值计算的。一般是基本指令占54%(其中输入指令占17%,输出指令13%,逻辑运算指令21%,定时器输出3%),数据处理指令占39%(其中传送指令占25%,四则函数运算指令,比较指令6%),其它指令7%。仍以三菱电机的小Q系列为例,其中的Q25HCPU的PCmix值是10.3,比A2UHCPU-S1快5倍(为2.0),比A2SHCPU快20倍多(PCmix值为0.5)。随着PLC的功能扩展,运算指令、文字处理指令、通信指令等用的越来越多,各种指令的使用频率也会发生一定的变化,PCmix值的计算也会有所变化。这里顺便提一下,之所以要多次举三菱电机为例,是因为它的PLC的*占日本的50%以上,为日本的大PLC供应厂商,因而具有相当的典型性。同时,通过软件技术提升PLC操作系统的水平,实现了事件中断的高速响应(200微秒)功能,高速计数功能,0.5毫秒(三菱电机的小Q系列PLC)、甚至0.2毫秒(横河电机的的FA-M3系列PLC)的恒定扫描时间功能
@
现代PLC与外部设备的数据交换速度高速化
与外部设备的数据交换速度高速化。
PLC的CPU模块通过系统总线(一般做在基板的印刷电路上)与装插在基板上的各种I/O模块、特殊功能模块、通信模块等交换数据,装插的模块越多,CPU模块与那些模块之间的数据交换的时间就会增加。这种数据交换的时间的增加,在一定程度上会使PLC的扫描时间加长。因此,有必要采取以下措施使系统总线传输速度高速化:增加系统总线的带宽使一次传输的数据量增多,例如三菱电机的小Q系列PLC,增加了系统总线的带宽,使所传输的数据量是以前的2倍;在系统总线存取的方式上,采用连续成组传送技术实现连续数据的高速批量传送,大大缩短了存取每个字所需的时间;通过向与系统总线相连接的模块实现全局传送,即针对多个模块同时传送同一数据,有效地用活了系统总线。
PLC编程设备服务处理的高速化趋势简介
编程设备服务处理的高速化。
当扫描时间为数十毫秒时,几毫秒的编程工具和监控设备的服务处理时间不会带来什么问题。但是在执行1毫秒以下的控制任务时,就有必要大大缩短这个时间。所采用的方法是以多CPU芯片并行处理的方式,由专门处理编程及监控服务的微处理器芯片执行这类处理,以减轻对执行控制程序的CPU芯片的影响,让它只管执行顺控和逻辑运算。此外,为了提高服务处理的效率,缩短在现场读写程序的时间,以缩短操作时间,采用了高速的串行通信(大的波特率为115.2Kbps)以及将UCB口(大波特率达12Mbps)引入PLC的CPU模块,从而实现与编程工具及监控设备之间通信的高速化,并允许同时使用这两个通信端口,由多人同时进行编程和调试。
@
SIMATIC S7-1500 PLC控制器拥有杰出的系统性能和一系列标准化功能,如运动控制、厂际信息安全、设备安全等。其尤其体现在创新的设计上,使调试更加方便,操作更加安全,并可对设备运行状态进行可调试的诊断。而其与TIA博途软件平台的结合,则可令项目成本进一步降低。新一代SIMATIC S7-1500 PLC控制器将分阶段逐步推向市场。初期的三种上市产品为中档产品,按CPU型号分为:1511、1513 和1516。每一种型号都可选择F型版本(故障安全版本)用于安全应用,并可调节不同性能等级。
西门子新一代TIA博途V12软件平台在之前的基础上添加了更多功能。譬如在无缝驱动集成方面,新的TIA博途V12软件平台可用于西门子Sinamics G系列变频器,通过“Sinamics Startdrive V12”工程系统的参数设置 ,并添加了系统诊断功能。此外,它也支持SIMATIC S7-1500 PLC控制器的安全功能,并拓展了Profinet的通讯功能。代理
2010年推出的西门子TIA博途(全集成自动化工程软件平台)使用户能够通过配置快速、直观地执行自动化和驱动任务。其软件平台专为实现率和易用性而设计,同时适用于新老用户。TIA博途为控制器、人机界面(HMI)和驱动器等提供了标准的工程理念,可分享统一的数据存储和一致的操作方式——譬如,在配置、通信和诊断期间的操作,并针对所有自动化对象提供强大的库功能。西门子S7代理-1500主机模块6ES75901AB600AA0详细介绍
SIEMENS 可编程控制器:1. SIMATIC S7 系列PLC S7200 s71200 S7300 S7400 ET200 2. 逻辑控制模块 LOGO 230RC 230RCO 230RCL 24RC 24RCL等 3. SITOP 系列直流电源 24V DC 1.3A 2.5A 3A 5A 10A 20A 40A 4. HMI 触摸屏TD200 TD400C TP177 MP277 MP377 SIEMENS上海腾桦电气设备有限公司主营西门子控制器,西门子可编程控制器,西门子扩展模块等产品欢迎来购!上海腾桦电气设备有限公司主营西门子控制器,西门子可编程控制器,西门子扩展模块等产品欢迎来购!交流直流传动装置: 1. 交流。2010年推出的西门子TIA博途(全集成自动化工程软件平台)使用户能够通过配置快速、直观地执行自动化和驱动任务。其软件平台专为实现率和易用性而设计,同时适用于新老用户。TIA博途为控制器、人机界面(HMI)和驱动器等提供了标准的工程理念,可分享统一的数据存储和一致的操作方式——譬如,在配置、通信和诊断期间的操作,并针对所有自动化对象提供强大的库功能。 TIA博途中简易的工程实现方式,有助于完整的数字自动化,如数字化规划、集成化工程和透明化操作等。TIA博途与PLM(产品生命周期管理)和MES(制造执行系统)软件一起构成了西门子完整的“数字化企业软件套件”,为企业迈向“工业4.0”奠定基础。 TIA博途中简易的工程实现方式,有助于完整的数字自动化,如数字化规划、集成化工程和透明化操作等。TIA博途与PLM(产品生命周期管理)和MES(制造执行系统)软件一起构成了西门子完整的“数字化企业软件套件”,为企业迈向“工业4.0”奠定基础。
SIEMENSPLC伺服控制
摘要:伴随着工业自动化的发展,对其 中的位置控制**度也逐步的提高,如何能方便,准确的实现位置控制,是一个 重大的问题,本文讲述了如何采用 PLC 可编程控制器来实现**控制。
分别列 举了三项方法,以及他们之间的相互比较。
引言 随着自动化水平的不断提高,越来越多的工业控制场合需要**的位置控 制。
因此,如何更方便、更准确地实现位置控制是工业控制领域内的一个重要问 题。
位置控制的**性主要取决于伺服驱动器和运动控制器的精度。
的运动 控制模块可以对伺服系统进行非常复杂的运动控制。
但在有些需要位置控制的场 合,其对位置精度的要求比较高,但运动的复杂程度不是很高,这就没有必要选 择那些昂贵的运动控制系统。
S7-200 系列 PLC 是一种体积小、编程简单、控制方便的可编程控制器,它 了多种位置控制方式可供用户选择,因此,如何利用该系列 PLC 实现对伺 服电机运动位置较为的控制是本文的研究重点。
1、基本控制系统 伺服系统分为液压伺服系统、电气-液压伺服系统以及电气伺服系统。
本文 主要讨论了电气伺服系统中的交流伺服系统,其基本组成为交流伺服电机、编码 器和伺服驱动器。
交流伺服系统的工作原理是伺服驱动器发送运动命令,驱动伺 服电机运动, 并接收来自编码器的反馈信号,然后重新计算伺服电机运动目标位 置,从而达到**控制伺服电机运动。
本伺服系统中选用 Exlar 公司生产的 GSX50-0601 型伺服直线电动缸。
该电 动缸由普通伺服电机和一个行星滚珠丝杠组成, 用来实现将旋转运动转变为直线 运动。
此外, 选用 Xenus 公司生产的 XenusTM 型伺服驱动器。
它可以利用 RS. 232 串口通信方式和外部脉冲方式实现位置控制。
一般来说, 一个伺服系统运转需要配置一个上位机,所以本系统采用西门子 S7-200PLC 作为上位机控制器。
通过高速脉冲输出、EM253 位置控制模块、自 由口通信三种方式控制伺服电机运动。
2、高速脉冲输出模式 西门子 CPU224XP 配置两个内置脉冲发生器,它有脉冲串输出(PTO)和脉冲 宽度调制输出两种脉冲发生模式可供选择。
这两个脉冲发生器的脉冲输出频 率为 100kHz。
在脉冲串输出方式中,PLC 可生成一个 50%占空比脉冲串,用于 步进电机或伺服电机的速度和位置的控制。
2.1 硬件构成
图 1 为高速脉冲输出方式的位置控制原理图。
控制过程中,将伺服驱动器工 作定义在脉冲+方向模式下,Q0.0 发送脉冲信号,控制电机的转速和目标位置; Qo,发送方向信号,控制电机的运动方向。
伺服电动缸上带有左限位开关 LIM 一、右限位开关 LIM+ 以及参考点位置开关 REF 。
三个限位信号分别连接到 CPU224XP 的 I0.0~I0.2 三个端子上, 可通过软件编程, 实现限位和找寻参考点。
图 1 位置控制原理图 2.2 程序设计 高速脉冲串输出(PTO)可以通过 Step7Micro/WIN 的位置控制向导进行组态, 也可通过软件编程实现控制。
PTO 输出方式没有专门的位置控制指令,只有一 条脉冲串输出指令,而且在脉冲发送过程中不能停止,也不能修改参数。
为解决 以上问题,可以设置脉冲计数值等于 10(或更小),并能使脉冲发送指令 PLS 处 于激活状态。
这样,就可以在任一脉冲串发送完之后修改脉冲周期。
图 2 为高速脉冲输出方式位置控制流程图。
控制思路为:通过 PTO 模式输 出,可以控制脉冲的周期和个数;通过启用高速计数器 HSC,对输出脉冲进行 实时计数和定位控制,以控制伺服电机的运动过程。
图 2 位置控制流程图 3、EM253 位置控制模块 EM253 位置控制模块是西门子 S7-200 的特殊功能位置控制模块,它能够产 生脉冲串用于步进电机与伺服电机的速度和位置的开环控制。
3.1 硬件构成 如图 3 所示为 EM253 位置控制原理图, 定义伺服驱动器工作在脉冲+方向模 式下。
P0 口发送脉冲,P1 口发送方向,DIS 端硬件使能放大器,并同时清除放 大器错误。
LIM-、LIM+、REF 分别为电机左限位、右限位以及参考点。
图 3EM253 位置控制原理图 3.2 程序设计 EM253 位置控制模块可以通过 Step7-Micro/WIN 进行向导配置, 配置完成后 系统将自动生成子程序,编程简单、可轻松实现手动、自动、轨迹运行模式。
由 于 EM253 属于开环控制,不能很好地反馈电机实际运动情况。
因此,利用伺服 驱动器本身的差分输出信号,通过伺服驱动器软件设置,反馈给 PLC,实现闭环 位置控制。
但由于直线伺服电动缸与 PLE 可允许发送接收信号存在一定差别, 因此,需要对输入到 PLC 的信号进行电平的转化以及降低伺服驱动器发送的反 馈脉冲频率。
PLC 对输入脉冲进行累加, 从而得到电机的实际运转位置与运转速 度,其脉冲计数程序如下。
①计数器初始化程序 L***O.1//*扫描时 MOVB16#FC,SMB47//SMB47=16#F4,SMB47 为高速计数器 1 的控制字节 HDEF1,9//将 HSC1 配置为正交模式 MOVD0,SMD48//设置 HSCI 的新初始值为 0 MOVD20000,SMD52//设置 HSCI 的新预设值为 20000 HSCI//激活高速计数器 I ②脉冲计数程序 L***O.0 MOVDHC1,VD600//将高速计数器 1 所记数值存储在 VD600 中
DTRVD600,VD610//VD601〕中的整数转化为实数,存人 VD610 /RSOOO,VD610//VD610 除以 5000 存入 VD610,5001〕为电机旋转一周编码 器发送脉冲数 *R2.54,VD610//VD610 乘以 2.54 存人 VD610,2.54 为电机旋转一周移动的距 离 4、RS-232 串口通信方式 4.1 硬件构成 西门子 CPU22
伺服系统和 PLC 分别作为系统的主从站。
PLC 控制器通过该 通信功能可实现对伺服驱动器进行运行控制、参数读取、伺服驱动器当前运动状 态的读取等操作。
当 S7-200 系列 PLC 工作在自由口通信模式下时,一般通过 CPU 模块的集 成接口进行通信。
CPU 集成接口采用了 PPI 硬件规范,其接口为 RS-485 串口, 因此,当 S7-200 系列 PLC 的 CPU 与带有 RS-232 标准接口的计算机或伺服驱动 器连接时,需要配套选用 S7-200PLC 的 PC/PPI 转换电缆或一个 RS-232/RS-485 转换器。
4.2PLC 与伺服系统通信 4.2.1 报文构成 S-200PLC 在无协议通信方式工作时,不需要任何通信协议,通信参数需要 根据与其进行通信的伺服驱动器的通信格式进行设定。
本伺服系统选用的 Xe-nus 伺服驱动器可通过 RS-232 与 PLC 利用 ASCII 码进行通信,其 ASCII 码消息命 令格式如下:
如:sr0x2A21表示设 置伺服控制器工作在可编程控制模式。
4.2.2 程序设计 程序设计时, 将伺服驱动器工作定义在可编程位置模式。
该模式支持实时更 改伺服电机的运动速度、位置,通过 RS-232 接收来自 PLC 的 ASCII 码命令,执 行运动。
部分程序如下:
①初始化程序 L***O.1//*扫描 MOVB9,SMB30//设置自由端口 0 通信方式 SMB30=9、8 位数据位、9600、 PPI MOVB188,SMB87//设置自由端口。
接收信息控制 5MB87=188 MOVB13, SMB89//设置自由端口 0 结束字符 SMB89=13, 即结束字符= MOVW0,SMW90//设置自由端口 0 空闲超时 SMB90=0,信息接收始终处于 有效 MOVW200,SMW92//设置自由端口 0 信息超时 SMB92=200ms MOVB255,SMB94//设置自由端口 0 接收字符数 SMB94=255 ATCHINT_0,9//发送完成触发中断 0 ENI//允许中断 ②发送信息程序 LDNVD3501.1//VD3501.1 为接收延迟,自由端口 0 没有处于接收延迟时 ASM4.5//自由端口 0 处于空闲状态,SM4.5=1 AB=VB18,7//命令字节 VB18=7,即要求设置运动目标位置 SCPY"sr0xca',VB3100//"sr0xca',复制到 VB3100,"sr0xca'为设置运动目标位 置命令 SCATB3600,VB3100//VB360()内的目标位置值连接到设置目标位置命令 后 SCATVB3190,VB3100//VB3190 内的结束字节连接到 VB3100 后; XMTVB3100,0//通过自由端口 0 发送命令至伺服驱动器 ③发送完成中断程序(接收信息) L***0.0//SM0.0 总是为 1 SSM87.7,1//置 SM87.7=1,SM87.7 为允许接收信息位
MPI 是; 作为 MPI 从站,用于和 MPI 主站的数据交换(S7-300/S7-400-CPU、OP、TD、按钮式面板);S7-200 内部 CPU/CPU 通讯在 MPI 网络中可能受限;传输速率 19.2/187.5 kbit/s● PPI 是; 附带 PPI 协议,用于编程功能、HMI 功能 (TD 200,OP),S7200内部CPU/CPU通讯;传输速率 9.6/19.2/187.5 kbit/s● 串行数据交换 是; 作为可自由编程的接口,使用附带 ASCII 协议波特率的外部设备用于串联数据交换: 1.2/2.4/4.8/9.6/19.2/38.4/57.6/115.2 Kbit/s;PC/PPI 电缆也可用作 RS232/RS485 变换器MPI● 传输速率,小值 19.2 kbit/s● 传输速率,大值 187.5 kbit/s2. 接口接口类型 集成 RS 485 接口物理组成 RS 485功能性● MPI 是; 作为 MPI 从站,用于和 MPI 主站的数据交换(S7-300/S7-400-CPU、OP、TD、按钮式面板);S7-200 内部 CPU/CPU 通讯在 MPI 网络中可能受限;传输速率 19.2/187.5 kbit/s● PPI 是; 附带 PPI 协议,用于编程功能、HMI 功能 (TD 200,OP),S7200内部CPU/CPU通讯;传输速率 9.6/19.2/187.5 kbit/s● 串行数据交换 是; 作为可自由编程的接口,使用附带 ASCII 协议波特率的外部设备用于串联数据交换: 1.2/2.4/4.8/9.6/19.2/38.4/57.6/115.2 Kbit/s;PC/PPI 电缆也可用作 RS232/RS485 变换器MPI● 传输速率,小值 19.2 kbit/s● 传输速率,大值 187.5 kbit/s集成功能计数器数量 6; 快速计数(2 至 200kHz 和 2 至 30 kHz),32 位(包括符号),可作为向前或向后计数器使用或用于 2 个增量编码器的连接附带 2 个旋转 90° 的脉冲序列(大 1 至 100kHz 和 3 至 20 kHz(A/B)计数器));释放和复位输入可参数化;当达到额定值时有中断可能(包括任意内容的子程序的调用);转换计数方向等计数频率(计数器),大值 200 kHz报警输入端的数量 4; 4 个上升脉冲和/或 4 个下降脉冲电位隔离数字输入电位隔离● 在通道之间 是● 在通道之间,分组点数 6 和 8数字输出电位隔离● 在通道之间 是; 继电器● 在通道之间,分组点数 3 和 4允许的电位差在不同电路之间 DC 500 V 在 DC 24 V 和 DC 5 V 之间;AC 1500 V 在 DC 24 V 和 AC 230 V 之间防护等级和防护类别防护等级符合 EN 60529● IP20 是环境要求环境条件 其他环境条件:参见"自动化系统 S7-200,系统手册"运行中的环境温度● 水平安装,小值 0 °C● 水平安装,大值 55 °C● 垂直安装,小值 0 °C● 垂直安装,大值 45 °C气压符合 IEC 60068-2-13 标准要求● 允许范围,下限 860 hPa● 允许范围,上限 1 080 hPa相对空气湿度● 操作,小值 5 %● 操作,大值 95 %; RH 应力强度 2 符合 IEC 1131-2组态编程● 操作备用装置 二进制运算、比较运算、时间运算、计数运算、时钟运算、传输运算、表格运算、逻辑运算、移动和旋转运算、转换运算、程序控制运算、中断和通讯运算、堆叠运算、固定点运算、浮点运算、数字功能● 程序编辑 自由循环 (OB 1),报警控制,时间控制(1 至 255 ms)● 程序组织 1 OB,1 DB,1 SDB 子程序有/无参数传输● 子程序数量,大值 64编程语言- KOP 是- FUP 是- AWL 是技术保护● 用户程序保护/密码保护 是; 3 级密码保护连接技术插拔式 I/O 端子 是尺寸宽度 140 mm高度 80 mm深度 62 mm重量重量,约 440 g6ES7222-1EF22-0XA0EM222, 8DO, AC 120/230V, 0.5A, OPT.ISOL.
PLC常见的输入元件有按钮、行程开关、挨近开关、转换开关、拨码器、各种传感器等,输出设备有继电器、接触器、电磁阀等。正确地衔接输入和输出电路,是确保PLC安全可靠作业的条件。
1、与主令电器元件衔接
如下图所示是与按钮、行程开关、转换开关等主令电器类输入设备的接线示意图。图中的PLC为直流汇点式输入,即一切输入点共用一个公共端COM,一起COM端内带有DC24V电源。
2、与旋转编码器衔接
旋转编码器是一种光电式旋转丈量设备,它将被测的角位移直接转换成数字信号(高速脉冲信号)。因些可将旋转编码器的输出脉冲信号直接输入给PLC,运用PLC的高速计数器对其脉冲信号进行计数,以取得丈量结果。不同类型的旋转编码器,其输出脉冲的相数也不同,有的旋转编码器输出A、B、Z三相脉冲,有的只要A、B相两相,简略的只要A相。
输出两相脉冲的旋转编码器与FX系列PLC示例,编码器有4条引线,其间2条是脉冲输出线,1条是COM端线,1条是电源线。编码器的电源能够是外接电源,也可直接运用PLC的DC24V电源。电源“-”端要与编码器的COM端衔接,“+ ”与编码器的电源端衔接。编码器的COM端与PLC输入COM端衔接,A、B两相脉冲输出线直接与PLC的输入端衔接,衔接时要注意PLC输入的呼应时刻。有的旋转编码器还有一条屏蔽线,运用时要将屏蔽线接地。
3、与传感器衔接
传感器的品种许多,其输出办法也各不相同。当选用挨近开关、光电开关等两线式传感器时,因为传感器的漏电流较大,可能呈现过错的输入信号而导致PLC的误动作,此刻可在PLC输入端并联旁路电阻R。当漏电流不足lmA时能够不考虑其影响。
4、与多位拨码开关衔接
假如PLC控制系统中的某些数据需求常常修正,可运用多位拨码开关与PLC衔接,在PLC外部进行数据设定。例如一位拨码开关能输入一位十进制数的0~9,或一位十六进制数的0~F。拨码开关拼装在一起,把各位拨码开关的COM端连在一起,接在PLC输入侧的COM端子上。每位拨码开关的4条数据线按一定次序接在PLC的4个输入点上。由图可见,运用拨码开关要占用许多PLC 输入点,所以不是十分必要的场合,一般不要选用这种办法。
PLC与输出元件的衔接
PLC开关量输出的有:
继电器输出:输出交直流都能够,电压规模宽,电流大,动作频率低,一般1Hz左右。
晶体管输出:只能输出直流,一般是30V以下,电流小,动作频率高,可达200KHz或更高。
晶闸管输出:只能输出沟通,一般是60-450V,电流大,动作频率高,价格贵。
模拟量输出的有:
电压输出,一般是-10V到+10V电压输出。
电流输出,一般是0-20mA、4-20mA电流输出。
PLC与输出设备衔接时,不同组(不同公共端)的输出点,其对应输出设备(负载)的电压类型、等级能够不同,但同组(相同公共端)的输出点,其电压类型和等级应该相同。要根据输出设备电压的类型和等级来决议是否分组衔接。如下图所示以FX2N为例说明PLC与输出设备的衔接办法。图中接法是输出设备具有相同电源的状况,所以各组的公共端连在一起,否则要分组衔接。
1、与理性负载元件衔接
PLC的输出端常常衔接的是理性输出设备(理性负载),为了按捺理性电路断开时发生的电压使PLC内部输出元件形成损坏。因而当PLC与理性输出设备衔接时,假如是直流理性负载,应在其两头并联续流二极管;假如是沟通理性负载,应在其两头并联阻容吸收电路。
2、与七段LED显示器衔接
PLC可直接用开关量输出与七段LED显示器的衔接,但假如PLC控制的是多位LED七段显示器,所需的输出点是许多的。
西门子s7-200系列PLC变量存储区的结构及在分组轮流控制中的应用
熟练运用一款PLC进行编程设计和调试,把握其数据存储区的结构对错是很有必要的。尽管主流的PLC产品基本相似,学习和实践能够触类旁通,但在基础而又关键的存储区特色上,仍各有差异。当你了解透PLC的数据存储结构时,就能够挥洒自如处理一些数据处理问题。
二、西门子s7-200系列PLC存储器
西门子s7-200系列PLC的存储器,包括输入输出映像寄存器I、Q、AI、AQ,内部标志寄存器M、内部特别标志寄存器SM、变量存储器V、局部变量存储器L、顺序操控继电器存储器S、累加器AC、定时器存储器T、计数器存储器C以及高速计数存储器HC。
2.1 数据编址方式
存储器由许多存储单元构成,每个单元都有仅有的地址,能够依据存储器地址来存取数据。存储器地址格局分为四种:位、字节、字、双字。
以变量存储器V存储器为例,位为数字量布尔型,值为0或1,或许True或False两种状况,形如V11.0、V128.7。
字节包括8个位,字包括2个字节,而双字包括2个字。西门子PLC字和双字关于其字节和字的结构上有着自己的特色——低字节(低字)在高位上,即摩托罗拉编址方式。例如VW100,高字节是VB100,低字节是VB101;VD100,高字是VW100,低字是VW102。
PLC分光器的运行原理
PLC控制系统
与同轴电缆传输系统一样,光网络系统也需求将光信号进行耦合、分支、分配,这就需求光分路器来完成。光分路器又称分光器,是光纤链路中重要的无源器件之一,是具有多个输入端和多个输出端的光纤汇接器件,常用M×N来表示一个分路器有M个输入端和N个输出端。在光纤CATV系统中使用的光分路器一般都是1×2、1×3以及由它们组成的1×N光分路器。
1.光分路器的分光原理
光分路器按原理可以分为熔融拉锥型平和面波导型两种,熔融拉锥型产品是将两根或多根光纤进行旁边面熔接而成;平面波导型是微光学元件型产品,采用光刻技术,在介质或半导体基板上构成光波导,完成分支分配功用。这两种型式的分光原理相似,它们通过改动光纤间的消逝场彼此耦合(耦合度,耦合长度)以及改动光纤纤半径来完成不同巨细分支量,反之也可以将多路光信号合为一路信号叫做合成器。熔锥型光纤耦合器因制造办法简略、价格便宜、简略与外部光纤衔接成为一整体,而且可以耐孚机械振动和温度改变等优点,现在成为商场的干流制造技术。
熔融拉锥法就是将两根(或两根以上)除掉涂覆层的光纤以必定的办法靠扰,在高温加热下熔融,一同向两边拉伸,毕竟在加热区构成双锥体形式的特别波导结构,通过控制光纤改变的角度和拉伸的长度,可得到不同的分光比例。终把拉锥区用固化胶固化在石英基片上刺进不锈铜管内,这就是光分路器。这种出产工艺因固化胶的热膨胀系数与石英基片、不锈钢管的不*,在环境温度改变时热胀冷缩的程度就不*,此种情况简略导致光分路器损坏,特别把光分路放在野外的情况更甚,这也是光分路简略损坏得主要原因。关于更多路数的分路器出产可以用多个二分路器组成。
2.光分路器的常用技术目标
(1)刺进损耗。
光分路器的刺进损耗是指每一路输出相关于输入光丢失的dB数,其数学表达式为:Ai=-10lgPouti/Pin,其间Ai是指第i个输出口的刺进损耗;Pouti是第i个输出端口的光功率;Pin是输入端的光功率值。
(2)附加损耗。
附加损耗定义为一切输出端口的光功率总和相关于输入光功率丢失的DB数。值得一提的是,关于光纤耦合器,附加损耗是表现器件制造工艺质量的目标,反映的是器件制造进程的固有损耗,这个损耗越小越好,是制造质量好坏的查核目标。而刺进损耗则仅表示各个输出端口的输出功率情况,不只需固有损耗的要素,更考虑了分光比的影响。因而不同的光纤耦合器之间,刺进损耗的差异并不能反映器件制造质量的好坏。
(3)分光比。
分光比定义为光分路器各输出端口的输出功率比值,在系统使用中,分光比的确是根据实践系统光节点所需的光功率的多少,断定合适的分光比(平均分配的在外),光分路器的分光比与传输光的波长有关,例如一个光分路在传输1.31微米的光时两个输出端的分光比为50:50;在传输1.5μm的光时,则变为70:30(之所以呈现这种情况,是因为光分路器都有必定的带宽,即分光比底子不变时所传输光信号的频带宽度)。所以在订做光分路器时必定要注明波长。
使制造业更、更灵活
数字化对制造业影响巨大。通过贯穿产品研发、生产和供应链的数据整合,离散工业和过程工业都获益良多,从而帮助制造企业灵活应对客户的多样化需求。
满足不同客户需求,助力中国制造业转型
中国自改革开放以来,迅速崛起为制造业的翘楚。经过三十年的发展,现如今体量巨大的制造业也面临众多挑战。例如劳动力和原材料成本的升高、外汇变化造成的出口压力、产能过剩、环境污染等等。
中国制造业要提高在的竞争力,就需要以更好的质量、更高的生产和能源效率、更大的灵活性、更快的创新来应对多变的市场需求。西门子将创新技术贯穿于完整的供应链,实现硬件软件无缝集成,并结合在工业、自动化、流程及软件和数据分析方面的知识与经验,提供全面服务,确保客户的生产过程更加灵活、,并缩短产品上市时间。
面向即将到来的工业4.0时代,人是整个价值链的关键,劳动力将被从基础劳动中解放出来,投入到更有价值的创新、规划、协调工作当中去。西门子作为一个负责任的企业公民,十余年来,一直致力于将德国**的工程人才培养经验介绍到中国,携手教育部、全国高校和职业院校,推出了一系列人才发展计划,培养创新型工程人才,助力中国制造业的转型升级。
博大精深 同心致远
支持中国转型升级,让关键所在,逐一实现中国已进入了经济“新常态”格局,企业面临转型升级的关键时刻。西门子以客户面临的挑战为驱动力,凭借的工程技术与创新能力,以良好的电气化、自动化和数字化产品,解决方案和服务,为客户带来更大价值——更强的灵活性,更高的效率,更快的上市时间,实现可持续的发展。我们将这种力量称之为“博大精深,同心致远”。
制造业作为中国重要的经济支柱,正在面临挑战,例如:如何缩短产品上市时间、提高生产效率、以及大规模的生产如何能够兼顾价格和个性化的产品等。我们凭借创新技术,硬件软件无缝集成,并可基于数据分析进行服务,确保生产过程更加灵活、,且缩短产品上市时间。同时,与教育部合作,培养新一代创新型工程人才,推动制造业转型升级。
中国城市化趋势不仅需要不断的基础设施投资,更加需要为其注入数字化智慧,从而实现现代化城市的管理。全面提高城市韧性,以确保现代城市管理具有率和竞争力。在城市基础设施领域,我们以近百年的交通管理经验及遍及的成功案例,帮助城市建立了智能交通管理系统和交通信息管理平台,为管理者提供数据和建议,更让市民便捷出行,畅享宜居生活。
中国是世界上大的能源消费国,并且随着经济的增长,对能源的需求将持续飙升,能源系统结构也日渐复杂,给环境带来巨大压力。这就需要建设可持续的能源系统。通过为超高层建筑提供智能楼宇系统和能源管理解决方案,能够保证成千上万在这些建筑中生活,休闲,工作的人们的舒适与安全