西门子模块6SL3120-1TE21-8AD0参数详细
S7-300F
SIMATIC S7-300F 故障安全自动化系统可使用在对安全要求较高的设备中。其可对立即停车过程进行控制,因此不会对人身、环境造成损害。
S7-300F 满足下列安全要求:
要求等级 AK 1 - AK 6 符合 DIN V 19250/DIN V VDE 0801
安全要求等级 SIL 1 - SIL 3 符合 IEC 61508
类别 1 - 4 符合 EN 954-1
另外,标准模块还可用在 S7-300F 及故障安全模块中。因此它可以创建一个全集成的控制系统,在非安全相关和安全相关任务共存的工厂中使用。使用相同的标准工具对整个工厂进行组态和编程。
Design
S7-300
一般步骤
S7-300自动化系统采用模块化设计。它拥有丰富的模块,且这些模块均可以独立地组合使用。
一个系统包含下列组件:
CPU:
不同的 CPU 可用于不同的性能范围,包括具有集成 I/O 和对应功能的 CPU 以及具有集成 PROFIBUS DP、PROFINET 和点对点接口的 CPU。
用于数字量和模拟量输入/输出的信号模块 (SM)。
用于连接总线和点对点连接的通信处理器 (CP)。
用于高速计数、定位(开环/闭环)及 PID 控制的功能模块(FM)。
根据要求,也可使用下列模块:
用于将 SIMATIC S7-300 连接到 120/230 V AC 电源的负载电源模块(PS)。
接口模块 (IM),用于多层配置时连接中央控制器 (CC) 和扩展装置 (EU)。
通过分布式中央控制器 (CC) 和 3 个扩展装置 (EU),SIMATIC S7-300 可以操作多达 32 个模块。所有模块均在外壳中运行,并且无需风扇。
SIPLUS 模块可用于扩展的环境条件:
适用于 -25 至 +60℃ 的温度范围及高湿度、结露以及有雾的环境条件。防直接日晒、雨淋或水溅,在防护等级为 IP20 机柜内使用时,可直接在汽车或室外建筑使用。不需要空气调节的机柜和 IP65 外壳。
设计
简单的结构使得 S7-300 使用灵活且易于维护:
安装模块:
只需简单地将模块挂在安装导轨上,转动到位然后锁紧螺钉。
集成的背板总线:
背板总线集成到模块里。模块通过总线连接器相连,总线连接器插在外壳的背面。
模块采用机械编码,更换极为容易:
更换模块时,必须拧下模块的固定螺钉。按下闭锁机构,可轻松拔下前连接器。前连接器上的编码装置防止将已接线的连接器错插到其他的模块上。
现场证明可靠的连接:
对于信号模块,可以使用螺钉型、弹簧型或绝缘刺破型前连接器。
TOP 连接:
为采用螺钉型接线端子或弹簧型接线端子连接的 1 线 - 3 线连接系统提供预组装接线另外还可直接在信号模块上接线。
规定的安装深度:
所有的连接和连接器都在模块上的凹槽内,并有前盖保护。因此,所有模块应有明确的安装深度。
无插槽规则:
信号模块和通信处理器可以不受限制地以任何方式连接。系统可自行组态。
扩展
若用户的自动化任务需要 8 个以上的 SM、FM 或 CP 模块插槽时,则可对 S7-300(除 CPU 312 和 CPU 312C 外)进行扩展:
中央控制器和3个扩展机架多可连接32个模块:
总共可将 3 个扩展装置(EU)连接到中央控制器(CC)。每个 CC/EU 可以连接八个模块。
通过接口模板连接:
每个 CC / EU 都有自己的接口模块。在中央控制器上它总是被插在 CPU 旁边的插槽中,并自动处理与扩展装置的通信。
通过 IM 365 扩展:
1 个扩展装置远扩展距离为 1 米;电源电压也通过扩展装置提供。
通过 IM 360/361 扩展:
3 个扩展装置, CC 与 EU 之间以及 EU 与 EU 之间的远距离为 10m。
单独安装:
对于单独的 CC/EU,也能够以更远的距离安装。两个相邻 CC/EU 或 EU/EU 之间的距离:长达 10m。
灵活的安装选项:
CC/EU 既可以水平安装,也可以垂直安装。这样可以限度满足空间要求。
通信
S7-300 具有不同的通信接口:
连接 AS-Interface、PROFIBUS 和 PROFINET/工业以太网总线系统的通信处理器。
用于点到点连接的通信处理器
多点接口 (MPI), 集成在 CPU 中;
是一种经济有效的方案,可以同时连接编程器/PC、人机界面系统和其它的 SIMATIC S7/C7 自动化系统。
PROFIBUS DP进行过程通信
SIMATIC S7-300 通过通信处理器或通过配备集成 PROFIBUS DP 接口的 CPU 连接到 PROFIBUS DP 总线系统。通过带有 PROFIBUS DP 主站/从站接口的 CPU,可构建一个高速的分布式自动化系统,并且使得操作大大简化。
从用户的角度来看,PROFIBUS DP 上的分布式I/O处理与集中式I/O处理没有区别(相同的组态,编址及编程)。
使用神经网络,学习系统可以预测轮机的运行标准及其排放量(如需了解更多信息,请参阅第54页)。
驾驭复杂数据。学习软件的另一个主要应用领域是燃气轮机——在这方面,学习软件的基础主要是神经网络。这种系统能在数秒之间作出关于排放量和轮机运转情况的预测。轮机受无数因素之间复杂关系的影响,研究人员一般只能通过统计手段去评估,因为很多值都只能粗略地估算出来。传统的数学公式需要**的数字,因此在这种研究中不是很实用。但想要使轮机达到*长的使用寿命,实现的运转状态,同时将其排放量降到,就必须**地估算并预测数千种设置的影响。
为此,位于慕尼黑的西门子智能系统与控制全球技术领域(GTF)部门的Volkmar Sterzing及其CT团队开发了一种可以实现以上功能的新方法。使用所谓的递归神经网络,研究人员可以描绘燃气轮机的整个运转过程,并准确预测其产出。Sterzing解释说:“过去,我们只能了解到这些过程在某一时刻的状态。而现在,使用这个新方法,我们可以掌握在这个特定时刻之前及之后的运行情况。”Sterzing表示,利用这种方法,研究人员不仅可以查明过去发生了什么,还可以预见未来会发生什么。这种动态的描绘可以确认其中的变化,充分利用有利的变化,同时弱化可能产生负面影响的变化,并相应地调整维保计划。
未来,个人能源代理将使用装有学习软件的专业电表箱(左图)来操作顾客和电力公司之间的电力交易。
CT研究人员已经将他们从燃气轮机中学到的知识应用在相关领域内,例如优化风电机组及整个风电场。作为热心航海比赛船员的一份子,Sterzing知道在比赛中每时每刻都需要关注波浪、风速和对手的船只,这样才能决定驾驭船只的方式。否则,如果无法预测未来的变化,就不能规划*合适的路线。在这种办法的启发下,他为风电机组发明了一种软件系统,这种系统的基础是能够测量大约十种因素的传感器,包括风速、乱流度、温度和气压。算法将这些数据和风电场发电量联系起来,这样软件就能够从数以千计的关系中学习并学会如何在新情况下应用已有的知识。
西门子研究人员现在正在测试该系统。
随着对不同情况的学习,系统越来越擅长独立预测,知道哪种情况下,旋转叶片的入射角或发电机速度快慢的改变,使得风电机组能够从风中获得*大的产出。这种方法可以将风电机组的产出提高0.5个百分点。听起来似乎不多,但是对一个大型风电场而言就是很显著的效果。在过去的六个月里,瑞典Lillgrund风电场进行的实验已经表明,正是得益于从自己的行为中独立学习的能力,即所谓的自主学习,风电场提高了发电量,这相当于额外添加了一台风电机组所生产的电量。
从声音中学习——高效节能
将电弧炉中的铁块熔炼成钢板会产生大量噪声。重量各异的铁块,有的甚至像汽车那么大,在三个强大的电弧下熔化时来回滑动。虽然电弧的温度高达一万摄氏度,有时也不能将熔化的铁块焊接起来,而将能量消耗到炉壁上。熔炉产生的噪声震耳欲聋。三相交流电电极的电弧产生大约120分贝的噪声,比喷气式飞机的噪声都大。Detlef Rieger是慕尼黑西门子中央研究院的非破坏性试验全球技术领域(GTF)部门的项目经理,Thomas Matschullat就职于爱尔兰根的冶金技术部门。正是这样巨大的噪声使两位科学家不得不认真思考这一问题。两人想知道该如何监视和控制熔炼过程,以减少能源的浪费。
电机是电气领域不可缺少的一部分,主要的职能是提供动力。不过在使用的过程中,很多时候电机都会出现发热发烫的现象,这是为什么呢?下面小编为大家总结了几种常见的电机发热的原因和解决办法,希望对您能够有所帮助。 1、轴承工作不正常,必定造成电机发热 轴承工作是否正常可凭听觉及温度经验来判断。 可用手或温度计检测轴承端判断其温度是否在正常范围内;也可用听棒(铜棒)接触轴承盒,若听到冲击声,就表示可能有一只或几只滚珠轧碎,如果听到有咝咝声,那就是表示轴承的润滑油不足,电机应在运行3,000小时~5,000小时左右换一次润滑脂。 2、电源电压偏高,励磁电流增大,电机会过度发热 过高电压会危及电机绝缘,使其有被击穿的危险。电源电压过低时,电磁转矩就会降低,如果负载转距没有减小,转子转数过低,这时转差率增大会造成电机过载而发热,长时间过载会影响电机的寿命。当三相电压不对称时,即一相电压偏高或偏低时,会导致某相电流过大,电机发热,同时转距减小会发出“嗡嗡”声,时间长了会损坏绕组。 无论电压过高、过低或电压不对称都会使电流增加,电机发热而损坏电机。因此按照国家标准,电机电源电压的变化应不超出额定值的±5%,电机输出功率可保持额定值。电机电源电压不允许超过额定值的±10%,三相电源电压之间的差值不应超出额定值的±5%。 3、电机的不正常振动或噪音容易引起电机的发热 这种情况属于电机本身引起的振动,多数是由于转子动平衡不好,以及轴承不良、转轴弯曲,端盖、机座、转子不同轴心,紧固件松动或电机安装地基不平、安装不到位造成的,也可能是机械端传递过来,应针对具体情况排除。 4、电机定、转子之间气隙很小,容易导致定、转子之间相碰 在中、小型电机中,气隙一般为0.2mm~1.5mm。气隙大时,要求励磁电流大,从而影响电机的功率因数;气隙太小,转子有可能发生摩擦或碰撞。一般由于轴承严重超差及端盖内孔磨损变形,使机座、端盖、转子三者不同轴心引起扫膛,很容易使电机发热甚至烧毁。如发现轴承磨损应及时更换,对端盖进行更换或刷镀处理,比较简单的处理方法是给端盖镶套。 5、几乎有一半以上电机烧毁都是由于电机缺相运行引起的 缺相常常造成电机不能运行或启动后转速缓慢,或转动无力电流增大有“嗡嗡”的响声现象。如果轴上负载没有改变,则电机处于严重过载状态,定子电流将达到额定值的2倍甚至更高。短时间内电机就会发热甚至烧毁。造成缺相运行的主要原因如下: 电源线路上因其它设备故障引起一相断电,接在该线路上的其它三相设备就会缺相运行。 断路器或接触器一相由于偏电压烧毁或接触不良造成缺相。 电机接进线由于老化、磨损等原因造成的缺相。 电机一相绕组断路,或接线盒内一相接头松脱。 6、物料泄露进入电机内部,使电机绝缘降低,从而使电机允许温升降低 固体物料或粉尘从接线盒处进入电机内部,则会到达电机定子、转子的气隙之间,造成电机扫膛,直到磨坏电机绕组绝缘,使电机损坏或报废。如果液体和气体介质泄漏进入电机内部,将会直接造成电机绝缘下降而跳闸。 一般液体和气体泄漏有以下几种表现形式: 各种容器和输送管道泄漏、泵体密封泄漏、冲洗设备和地面; 机械油泄漏后从前端轴承盒缝隙中进入电机; 与电机相连的减速机等油封磨损,机械润滑油顺着电机轴进入,在电机内部积聚后,溶解电机绝缘漆,使电机绝缘性能逐步降低。 7、绕组短路,匝间短路,相间短路和绕组断路 绕组中相邻两条导线之间的绝缘损坏后,使两导体相碰,称为绕组短路。发生在同一绕组中的绕组短路称为匝间短路。发生在两相绕组之间的绕组短路称为相间短路。不论是那一种,都会使某一相或两相电流增加,引起局部发热,使绝缘老化损坏电机。绕组断路是指电机的定子或转子绕组碰断或烧断造成的故障。不论是绕组短路或断路都可能引起电机发热甚至烧毁。因此,发生这种情况后必须立即停机处理。 8、其它非机械电气故障原因 其它非机械电气故障原因造成的电机温度升高,严重时也可能导致电机故障。如环境温度高,电机缺少风扇、风扇不完整或缺少风扇罩。这种情况下必须强制冷却保证通风或更换风叶等,否则无法保证电机的正常运行。 为了能采用正确的方法进行电机故障处理,就必须熟悉电机常见故障的特点及原因,抓住关键因素,定期检查和维护,这样才能少走弯路,节省时间,尽快地排除故障,使电机处于正常的运转状态。从而保证车间正常生产 |